
Teaching Geometry According to the
Common Core Standards

H. Wu

January 1, 2012.
Revised: April 15, 2012.

Contents

Preface 2

Grade 4 6

Grade 5 18

Grade 6 30

Grade 7 46

Grade 8 61

High School Geometry 108

1



Preface

Le juge: Accusé, vous tâcherez d’être bref.

L’accusé: Je tâcherai d’être clair.

—G. Courteline1

This document is a collection of grade-by-grade mathematical commentaries on

the teaching of the geometry standards in the CCSS (Common Core State Standards)

from grade 4 to high school. The emphasis is on the progression of the mathemati-

cal ideas through the grades. It complements the usual writings and discussions on

the CCSS which emphasize the latter’s Practice Standards. It is hoped that this

document will promote a better understanding of the Practice Standards by giving

them mathematical substance rather than adding to the verbal descriptions of what

mathematics is about. Seeing mathematics in action is a far better way of coming to

grips with these Practice Standards but, unfortunately, in an era of Textbook School

Mathematics,2 one does not get to see mathematics in action too often. Mathemati-

cians should have done much more to reveal the true nature of mathematics, but they

didn’t, and school mathematics education is the worse for it. Let us hope that, with

the advent of the CCSS, more of such efforts will be forthcoming.

The geometry standards in the CCSS deviate from the usual geometry standards

in at least two respects, one big and one small. The small one is that, for the first

time, special attention is paid to the need of a proof for the area formula for rectangles

when the side lengths are fractions. This is standard NF 4b in grade 5:

Find the area of a rectangle with fractional side lengths by tiling it with [rect-

angles] of the appropriate unit fraction side lengths, and show that the area

is the same as would be found by multiplying the side lengths. Multiply frac-

tional side lengths to find areas of rectangles, and represent fraction products

as rectangular areas.

1Quoted in the classic, Commutative Algebra, of Zariski-Samuel. Literal translation: The judge:
“The defendant will try to be brief.” The defendant replies, “I will try to be clear.”

2A turquoise box around a phrase or a sentence (such as Textbook School Mathematics ) indicates
an active link to an article online; just click on it and the article will appear on-screen.
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The lack of explanation for the rectangle area formula when the side lengths are

fractions is symptomatic of what has gone wrong in school mathematics education.

Often basic facts are not clearly explained, or explained incorrectly. Because the

explanation in this case requires a full understanding of fraction multiplication and

the basic ingredients of the concept of area (see (a)–(d) on page 20 ), and because the

reasoning is far from routine and yet very accessible to fifth graders, this explanation

is potentially a high point in students’ encounter with mensuration formulas in K–12.

Let us make sure that it is this time around.

The major deviation of the CCSS from the usual geometry standards occurs in

grade 8 and high school. There is at present an almost total disconnect in the stan-

dard curriculum between the geometry of middle school and that of high school. On

the one hand, congruence and similarity are defined in middle school as “same size

and same shape” and “same shape but not necessarily same size”, respectively, and

transformations (rotations, reflections, and translations) are taught seemingly only

for the purpose of art appreciation, such as appreciating the internal symmetries of

Escher’s famous designs and medieval Islamic art but without any reference to math-

ematics. On the other hand, the concept of congruence and similarity are defined

anew in a high school geometry course, but only for polygons, and at the end of

the year, transformations are sometimes brought up as enhancement of the concept

of polygon congruence. It goes without saying that such a haphazard treatment of

key mathematical concepts does not exemplify acceptable mathematics education. In

contrast, there is a seamless transition from the geometry of grade 8 to high school

geometry in the CCSS. The concepts of rotation, reflection, translation, and dilation

taught in grade 8—basically on an intuitive level—become the foundation for the

mathematical development of the high school geometry course. In the process, stu-

dents get to see, perhaps for the first time, the mathematical significance of rotation,

reflection, translation, and dilation as well as the precise meaning of congruence and

similarity. Thus the latter are no longer seen to be some abstract and shadowy con-

cepts but are, rather, concepts open to tactile investigations. In addition, it is only

through the precise definition of congruence as a composition of rotations, reflections,

and translations that students can begin to make sense of what is known in Text-

book School Mathematics as “CPCTC” (corresponding parts of congruent triangles

are congruent ).
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Because rotation, reflection, translation, and dilation are now used for a serious

mathematical purpose, there is a perception that so-called “transformational geom-

etry” (whatever that means) rules the CCSS geometry curriculum. Because “trans-

formational geometry” is perceived to be something quaint and faddish—not to say

incomprehensible to school students—many have expressed reservations about the

CCSS geometry standards.

The truth is different. For reasons outlined above, the school geometry curriculum

has been dysfunctional for so long that it cries out for a reasonable restructuring.

The new course charted by the CCSS will be seen to fulfill the minimal requirements

of what a reasonable restructuring ought to be, namely, it is minimally intrusive

in introducing only one new concept (that of a dilation ), and it helps students to

make more sense of school geometry by making the traditionally opaque concepts of

congruence and similarity learnable. One cannot overstate the fact that the CCSS

do not pursue “transformational geometry” per se. Transformations are

merely a means to an end: they are used in a strictly utilitarian way to streamline

the existing school geometry curriculum. One can see from the high school geometry

standards of the CCSS that, once reflections, rotations, reflections, and dilations have

contributed to the proofs of the standard triangle congruence and similarity criteria

(SAS, SSS, etc.), the development of plane geometry can proceed along traditional

lines if one so desires. In fact, such a development was carried out in 2006 and was

subsequently recorded in Chapters 4–7 of H. Wu, Pre-Algebra. A complete account

of this treatment of geometry will appear (probably in 2013) in the first two volumes

of a three-volume work, H. Wu, Mathematics of the Secondary School Curriculum, I,

II, and III. In the meantime, please see page 148 and page 152 for further comments

on this issue.

Such knowledge about the role of reflections, rotations, etc., in plane geometry is

fairly routine to working geometers, but is mostly unknown to teachers and mathe-

matics educators alike because mathematicians have been negligent in sharing their

knowledge. A successful implementation of the CCSS therefore requires a massive

national effort to teach mathematics to inservice and preservice teachers. To the

extent that such an effort does not seem to be forthcoming as of April 2012, I am

posting this document on the web in order to make a reasonably detailed account of

this knowledge freely available.
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My fervent hope is that this mathematical restructuring of school geometry by the

CCSS will lead to greater student achievement.

The present commentaries avoid the pitfall of most existing materials that treat

school geometry as an exercise in learning new vocabulary and new formulas without

proofs. The main focus will be on mathematical ideas and detailed reasoning will

be given whenever feasible. In essence, this article gives substance to the Practice

Standards in the CCSS (recall the comments on the Practice Standards in the first

paragraph). In the case of the transition from middle school to high school geometry,

the commentaries on the relevant standards are uncommonly expansive for exactly

the reason that there seems to be no such account in the education literature. More

detailed references will be given in due course on page 63 and page 112 .

Acknowledgements. I owe Angelo Segalla and Clinton Rempel an immense

debt for their invaluable help in the preparation of this article. Over a period of

nine months, they not only gave me mathematical and linguistic feedback about the

exposition, but also told me how to adjust my writing to the realities of the school

classroom. This would have been a lesser article without their intervention.

This revision was made possible only through the generosity of my friends: David

Collins, Larry Francis, and Sunil Koswatta in addition to Angelo and Clinton. They

pointed out many flaws of the original from different angles, and their critical com-

ments spurred me to rewrite several passages. The resulting improvements should be

obvious to one and all. It gives me pleasure to thank them warmly for their contri-

butions, and I also want to thank Larry for creating the three animations on pp. 75 ,

100 , and 142 .

The Common Core geometry standards for each grade are recalled at the beginning

of that grade in sans serif font.
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GRADE 4

Geometric measurement: understand concepts of angle and measure angles.

5. Recognize angles as geometric shapes that are formed wherever two rays share a

common endpoint, and understand concepts of angle measurement:

a. An angle is measured with reference to a circle with its center at the common

endpoint of the rays, by considering the fraction of the circular arc between the points

where the two rays intersect the circle. An angle that turns through 1/360 of a circle is

called a one-degree angle, and can be used to measure angles.

b. An angle that turns through n one-degree angles is said to have an angle measure

of n degrees.

6. Measure angles in whole-number degrees using a protractor. Sketch angles of

specified measure.

7. Recognize angle measure as additive. When an angle is decomposed into non-

overlapping parts, the angle measure of the whole is the sum of the angle measures of the

parts. Solve addition and subtraction problems to find unknown angles on a diagram in

real world and mathematical problems, e.g., by using an equation with a symbol for the

unknown angle measure.

Geometry 4.G

Draw and identify lines and angles, and classify shapes by properties of their

lines and angles.

1. Draw points, lines, line segments, rays, angles (right, acute, obtuse), and perpen-

dicular and parallel lines. Identify these in two-dimensional figures.

2. Classify two-dimensional figures based on the presence or absence of parallel or

perpendicular lines, or the presence or absence of angles of a specified size. Recognize

right triangles as a category, and identify right triangles.
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3. Recognize a line of symmetry for a two-dimensional figure as a line across the

figure such that the figure can be folded along the line into matching parts. Identify

line-symmetric figures and draw lines of symmetry.

u
Comments on teaching grade 4 geometry

The main topics of Grade 4 geometry are angles and their measurements, and the

phenomena of perpendicularity and parallelism.

We know that a line goes on forever in two directions (first of the three figures

below). When a point O is chosen on a line, it creates two rays: one ray goes on

forever from O to the right, and the other goes on forever from O to the left, as

shown. Thus each ray goes on forever only in one direction. In each ray, the point O

is called the vertex of the ray.

.O

.O

An angle is the figure formed by two rays with a common vertex, as shown.

"
"
"
"
"

O r
We are mainly interested in angles where the two rays are distinct. The case where

the two rays coincide is called the zero angle. The case where the two rays together

form a straight line is called a straight angle, as shown.

rO
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For an angle that is neither the a zero angle nor a straight angle, there is a question

of which part of the angle we want to measure. Take an angle whose sides are the

rays OA and OB, as shown below. Then ∠AOB could be either one of two parts, as

indicated by the respective arcs below.

Figure 1

A

BOO

A

B

s

t

We will use the notation ∠s to denote the part of the angle ∠AOB indicated on

the left, and ∠t to denote the part of the angle ∠AOB indicated on the right. If

nothing is said, then ∠AOB will be understood to mean ∠s.

Just as we measure the length of a line segment in order to be able to say which

is longer, we want to also measure the “size” of an angle so that we can say which

is “bigger”. In the case of length, recall that we have to begin by agreeing on a unit

(inch, cm, ft, etc.) so that we can say a segment has length 1 (respectively, inch, cm,

ft, etc.), we likewise must agree on a unit of measurement for the “size” of an angle.

A common unit is degree, and we explain what it is as follows.

Given ∠AOB as above, we draw a circle with the vertex O as center. Then the

sides of ∠AOB intercept an arc on the circle: ∠s intercepts the thickened arc on

the left, and ∠t intercepts the thickened arc on the right.

t

A

B

A

B
OO

s
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The length of this arc when the length of the whole circle is taken to be 360 is what

is meant by the degree of the angle. Let us explain this in greater detail. Think of

the circle as a (very thin piece of round) steel wire. We may as well assume that the

points A and B of the angle are points on the circle. Then imagine we cut the wire

open at B and we stretch it out as a line segment with B as the left endpoint of the

segment. Now divide the segment into 360 equal parts (i.e., parts of equal length)

and let the length of one part to be the unit 1 on this number line (the unit is too

small to be drawn below). Then this unit is called a degree. Relative to the degree,

the length of the whole segment (i.e., wire) is 360 degrees.

0 360

B

Recall that A is now a point on the segment. If we consider ∠s, let the arc
_

AB

correspond to the thickened segment from B to A shown below; the length of the

latter (or what is the same thing, the number represented by A) is what is called the

degree of the angle ∠s. We emphasize that this length of the segment from B to

A is taken relative to the unit which is the degree.

0 360

B A

If we consider ∠t instead, then the arc intercepted by ∠t is the following thickened

segment. As with ∠s, the degree of ∠t is by definition the length of this thickened

segment (again taken relative to the degree):

0 360

B A

What needs to be emphasized is that, so long as the center of the circle is O,

then no matter how “big” the circle is, the degree of ∠s or ∠t defined with respect

to the circle will always be the same number, so long as the whole wire is declared

to have length 360 degrees. In intuitive language, the length of the intercepted arc

by ∠AOB always stays a fixed fraction of the total length of the circle (called the

circumference) regardless of which circle is used. This assertion should fascinate
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fourth graders as indeed it is a remarkable fact. They should be encouraged to verify

it by extensive experimentation, for example, using a string to model circles of many

sizes. In fourth grade, the experimentation should mostly be done with “nice” angles

such as what we call “90 degree” angles:

OB B

A A

s

t

D

C
O

One way to do this is to draw a circle with center O on a piece of paper and fold the

paper to get a line BOC through O (see the above picture on the left). Notice that

the paper folding identifies the two halves of the circle separated by line BOC (see

the discussion of the “symmetry of the circle” on page 11 immediately following).

Now fold the circle once again across the center O so that the point B is on top of

the point C, thereby getting a line AOD. We are interested in the part of angle

∠AOB indicated by ∠s in the picture, which intercepts the thickened arc on the

circle between A and B. Now notice that the paper folding, across line AOD and

also across line BOC, identifies the four arcs separated by the two lines. Therefore

these four arcs have the same length, and therefore the whole circle is now divided

into four parts of equal length. It follows that if we stretch out the circle into a line

segment as before, then the point A would be the first division point if the segment

is divided into 4 parts of equal length:

0 360

B A

If the length of the whole segment is to be 360 degrees, then segment OA, being one

part when 360 is divided into 4 equal parts, has length 90 degrees (but see page 12 for

a more elaborate discussion of 90 degree angles). Since this discussion has nothing to

do with how big the circle is, we see that ∠s has 90 degrees no matter which circle is

used to measure ∠s, so long as its center is at O.
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We can give the same discussion to the angle ∠t in the preceding picture on the

right; it has 270 degrees because it is the totality of 3 parts when 360 is divided into

4 equal parts. Needless to say, we can do the same to other angles which have 45, 60,

or 120 degrees.

The notation for the measure of an angle ∠t is |∠t|, or sometimes, m(∠t). One

also uses the notation |∠AOB| or m(∠AOB) for the same purpose, but keep in

mind that this notation carries with it the uncertainty of whether |∠s| or |∠t| is

being measured (in the notation of Figure 1 on page 8 ) unless it is clearly specified.

Suppose the angle ∠s in Figure 1 on page 8 has d degrees, then a common terminology

is that the side OA is obtained from OB by turning d degrees counterclockwise.

Similarly, we say OB is obtained from OA by turning d degrees clockwise.

This definition of degree is the principle that underlies the construction of the

protractor. Students should be given various angles to find their degrees with the

help of a protractor. (For a simple demonstration, click here.)

A few special angles have degrees that are so striking that no protractor is needed

for their determination. One of these is the straight angle, A straight angle is 180◦

(the ◦ is the abbreviation for “degree”), and the reason for this is equally interesting.

To measure a straight angle ∠AOB, we draw a circle centered at O. Now the circle

is symmetric with respect to the line AB, which is a line passing through the

center, in the sense that if the circle is drawn on a piece of paper and the paper is

folded across the line AB, then the circle folds into itself, as shown on the right of

the following picture.

.
A BO OA B

.

This shows that the arclength of the upper semi-circle is equal to that of the lower

semi-circle. By the above definition of degree, the degree of the straight angle ∠AOB

is half of 360◦, which is, of course, 180◦.

0 360

B A
︸ ︷︷ ︸ ︸ ︷︷ ︸
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It would be instructive to explain to fourth graders why the converse statement

is also true: if an angle is 180◦, then the two sides of the angle form a line.

Before we discuss angles of 90◦, we observe an important additive property of

degree measurement: Given an angle ∠AOB, we first decide which part of ∠AOB we

wish to address, i.e., in the notation of Figure 1 on page 8, we decide at the outset

whether we use ∠AOB to refer to ∠s or to ∠t. Once that is done, then it is entirely

unambiguous to say whether a point C is in ∠AOB or not. That done, then it is

always the case that if C is in ∠AOB,

|∠AOC| + |∠COB| = |∠AOB|.

as the following pictures show:

BO

A

s

.

O

t

. A

B

C

C

It follows from simple arithmetic using this additive property that, if two lines

CD and AB meet at a point O and one of the four angles, let us say ∠COB at the

point of intersection is 90◦, then all four angles are 90◦. See the picture below, where

the broken segment | is the standard notation to indicate an angle of 90◦.

A

D

B

C

O
q

In this case, we say line AB is perpendicular to CD: in symbols, CD ⊥ AB.

Notice also that in the case of CD ⊥ AB, the ray OC divides the straight angle

into two equal parts in the sense that the two angles ∠AOC and ∠COB have the
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same degree. The ray OC is then called the angle bisector of ∠AOB. In general, if

a ray OC for a point C in the angle AOB has the property that ∠AOC and ∠COB

have the same degree, then OC is said to be the angle bisector of the angle ∠AOB.

For ∠s and ∠t of Figure 1, here are their angle bisectors.

O

A

B

A

Ot

C

C

B

s

Observe that if the two angle bisectors above are drawn in the same figure, it is a

straightforward computation to show that they form a straight line; in a fourth grade

classroom, the simple explanation should be given for angles with whole-number

degrees (but make sure that the degree is an even number because you want the

degree of each half-angle to be a whole number too). Point out that every angle has

an angle bisector. There should be plenty of exercises of using a protractor to find

the (approximate) angle bisector of a given angle.

A protractor is designed to measure angles up to 180◦. However, the additive

property of degrees makes possible the measurement of angles bigger than a straight

angle by the use of a protractor. For example, the degree of ∠t below is

|∠BOC|+ |∠COA| = 180◦ + |∠AOC|,

and we can measure the indicated ∠AOC with a protractor.

BC
O

t

A

By the same token, we can easily recognize an angle of 270◦, e.g., the part of

∠COB below as indicated by the arc:
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C

D

O
BA

By definition, an acute angle is an angle that is < 90◦, an obtuse angle is one

that is > 90◦, and a right angle is one that is 90◦.

Perpendicularity is one of two special relationships between two lines. The other

is parallelism. Two lines are said to be parallel if they do not intersect. One should

emphasize to students that the concept of parallelism applies only to lines, which ex-

tend in both directions indefinitely, rather than to segments. Thus while the following

two segments do not intersect, they are not parallel,

``````````

because the lines containing these segments do intersect. More precisely, when the

same segments are extended sufficiently far to the right, they intersect, as shown:

``````````q̀ `````````````````````````````q
Students should be alerted, early on, to the fact that we can never represent a

complete line pictorially on a finite piece of paper, only a part of a line. So classroom
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instruction should be careful to distinguish between what a picture suggests and what

a picture says literally.

It would help students to develop geometric intuition if they can verify the fol-

lowing by hands-on experiments:

• If a line is perpendicular to one of two parallel lines, then it is perpendicular to

both.

• Let L and L′ be parallel lines, and let another line ` be perpendicular to both.

Then the length of the segment intercepted on ` by L and L′ is always the same,

independent of where ` is located (so long as it is perpendicular to both L and

L′. This length is called the distance between L and L′.

L

L′
`

• If two distinct lines are perpendicular to the same line, then they are parallel

to each other.

• Define a triangle to be a figure consisting of the segments joining three non-

collinear points (i.e., they do not lie on a line). Then the sum of the degrees

of the angles of a triangle is 180◦.

We can make use of these facts as follows. A quadrilateral is a figure consisting

of four distinct points A, B, C, D (called vertices) together with the four segments

AB, BC, CD, DA (called edges or sides) so that the only intersections allowed

between the edges are at the vertices, namely, AB and BC intersect at B, BC and

CD intersect at C, CD and DA intersect at D, and DA and AB intersect at A. The

segments AC and BD are called the diagonals of the quadrilateral. The idea behind

the definition of a quadrilateral is that we do not want either figure in the middle or

on the right below to be a quadrilateral:
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Assuming the last bullet above, one can give the simple reasoning as to why

the sum of the angles of a quadrilateral is 360◦ (draw a diagonal to separate the

quadrilateral into two triangles). However, one has to be careful in the case of a

quadrilateral that looks like this:

s

B

A

C

D

In this situation, when we sum all the angles of this quadrilateral, the angle to use

at the vertex D will be understood to be the angle ∠s rather than the other part of

∠ADC. Furthermore, one should use the diagonal BD in this case for the verification

that the sum of the angles of this quadrilateral is 360◦. (One may also notice that

the diagonal AC lies outside the quadrilateral ABCD.)

A quadrilateral is called a parallelogram if opposite sides are parallel, and is

called a rectangle if all four angles are 90◦. It follows from the third bullet on page

15 that a rectangle is a parallelogram, and from the second bullet that the opposite

sides of a rectangle are equal (i.e., of the same length). It is valuable to impress on

students that as soon as a quadrilateral has four angles equal to 90◦, then its opposite

sides must be equal (see page 137 for a proof). 3 In addition, because the sum of the

angles of a quadrilateral is 360◦, a quadrilateral with three right angles is a rectangle.

A rectangle with four equal sides is called a square.

3Of course, the usual definition of a rectangle is that it is a quadrilateral with both properties that
all four angles are 90◦ and each pair of opposite sides are equal. We avoid this definition because it
makes it difficult to recognize whether a quadrilateral is a rectangle or not.
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A triangle is called a right triangle if one of its angles is a right angle, an acute

triangle if all three angles are acute, and an obtuse triangle if it contains an obtuse

angle. It follows from the last bullet on page 15 that a triangle cannot have more

than one obtuse angle or more than one right angle. The easiest way to get a right

triangle is to draw a diagonal of the rectangle; one gets two right triangles. One can

verify, by hands-on experiments such as cutting papers, for example, that the 180

degree rotation around the midpoint of the diagonal brings one of the right triangles

exactly on top of the other. We say in this case that a rectangle has rotational

symmetry.

��
�
��

�
��

�
�r

��
�
��

�
��

�
�

An isosceles triangle is a triangle with two equal sides. We usually refer to the

common vertex of the equal sides as the top vertex of the isosceles triangle, and

the angle at the top vertex the top angle. Again, verify through hands-on activities

that an isosceles triangle is symmetric with respect to (the line containing) the angle

bisector of the top angle. It follows that the angles facing the equal sides are equal

(i.e., same degree).

A triangle with three equal sides is called an equilateral triangle. Thus all three

angles of an equilateral triangle are equal.
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GRADE 5

Number and Operation — Fractions 5.NF

4. Apply and extend previous understandings of multiplication [of fractions] to multiply

a fraction or whole number by a fraction.

b. Find the area of a rectangle with fractional side lengths by tiling it with [rectangles]

of the appropriate unit fraction side lengths, and show that the area is the same as would

be found by multiplying the side lengths. Multiply fractional side lengths to find areas of

rectangles, and represent fraction products as rectangular areas.

Geometric measurement: understand concepts of volume and relate volume

to multiplication and to addition.

3. Recognize volume as an attribute of solid figures and understand concepts of volume

measurement.

a. A cube with side length 1 unit, called a unit cube, is said to have one cubic unit of

volume, and can be used to measure volume.

b. A solid figure which can be packed without gaps or overlaps using n unit cubes is

said to have a volume of n cubic units.

4. Measure volumes by counting unit cubes, using cubic cm, cubic in, cubic ft, and

improvised units.

5. Relate volume to the operations of multiplication and addition and solve real world

and mathematical problems involving volume.

a. Find the volume of a right rectangular prism with whole-number side lengths by

packing it with unit cubes, and show that the volume is the same as would be found

by multiplying the edge lengths, equivalently by multiplying the height by the area of

the base. Represent threefold whole-number products as volumes, e.g., to represent the

associative property of multiplication.

b. Apply the formulas V = ` × w × h and V = b × h for rectangular prisms to find

volumes of right rectangular prisms with whole-number edge lengths in the context of

18



solving real world and mathematical problems.

c. Recognize volume as additive. Find volumes of solid figures composed of two non-

overlapping right rectangular prisms by adding the volumes of the non-overlapping parts,

applying this technique to solve real world problems.

Geometry 5.G

Graph points on the coordinate plane to solve real-world and mathematical

problems.

1. Use a pair of perpendicular number lines, called axes, to define a coordinate system,

with the intersection of the lines (the origin) arranged to coincide with the 0 on each line

and a given point in the plane located by using an ordered pair of numbers, called its

coordinates. Understand that the first number indicates how far to travel from the origin

in the direction of one axis, and the second number indicates how far to travel in the

direction of the second axis, with the convention that the names of the two axes and the

coordinates correspond (e.g., x-axis and x-coordinate, y-axis and y-coordinate).

2. Represent real world and mathematical problems by graphing points in the first

quadrant of the coordinate plane, and interpret coordinate values of points in the context

of the situation. Classify two-dimensional figures into categories based on their properties.

3. Understand that attributes belonging to a category of two-dimensional figures also

belong to all subcategories of that category. For example, all rectangles have four right

angles and squares are rectangles, so all squares have four right angles.

4. Classify two-dimensional figures in a hierarchy based on properties.

u
Comments on teaching grade 5 geometry

The main objectives of this grade are the computation of the area formula of a

rectangle whose side lengths are fractions, the introduction of the concept of the vol-
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ume of a rectangular prism, the setting up of a coordinate system in the plane, and

the classification of common triangles and quadrilaterals according to their properties.

The computation of the area formula of a rectangle with fractional sides should

be a high point in school geometry. The result is not in doubt: it is length times

width. But it is the reasoning that reveals the essence of the concept of area, and this

reasoning is of course based on the basic properties of fractions and area. In advanced

mathematics, we simply prove that there is a way to assign an area to a region in the

plane so that the area so obtained enjoys these desirable properties.4 However, this is

a torturous process that is entirely unsuitable for use in schools, much less in grade 5.

So we take the simple way out by assuming that such an assignment is possible, and

concentrate instead of finding out, if the assignment of area possesses the following

obvious properties, what the area of each geometric figure must be:

(a) The area of a planar region is always a number ≥ 0.

(b) The area of a unit square (a square whose sides have length 1) is 1

square unit.

(c) If two regions are congruent, then their areas are equal.

(d) (Additivity) If two regions have at most (part of) their boundaries in

common, then the area of the region obtained by combining the two is the

sum of their individual areas.

We can amplify on the meaning of (d) by the following pictures.

CAA

B

4Strictly speaking, we can only assign an area to some, but not all regions.
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On the left, the regions A and B intersect only in a horizontal segment and a vertical

segment along their common boundary, so it is intuitively clear that the area of the

combined region of A and B is the sum of the areas of A and B. This is exactly what

(d) says. See the left picture below. On the right, the regions A and C have more

than part of their boundaries in common as they overlap in a sizable region. So the

area of the combined region of A and C is clearly strictly smaller than the sum of

the areas of A and C because, in adding the areas of A and C together, we count the

area of the overlapped region twice. See the right picture below.

CAA

B

We make a simple observation: (d) easily implies that if a region R is the com-

bined region of several smaller regions (i.e., more than two) that have at most their

boundaries in common, then the area of R is the sum of the areas of these smaller

regions.

Regarding (c), it suffices to define “congruent regions” in a fifth grade classroom

as “same shape and same size”; one can also check congruence of figures by cutting

out cardboard drawings and moving one on top of another. More precisely, the only

fact we need for the computation of the area of a rectangle is that rectangles with

the same length and width are “congruent” and therefore have the same area.

We can now compute the area of a rectangle with sides 3
4

and 2
7
. (The proof

is taken from the proof of Theorem 2 on pp. 63–64 of H. Wu, Pre-Algebra. 5 ) We

give the side lengths these explicit values because in a fifth grade classroom, one has

to begin with simple cases like this. Moreover, it will be seen that the reasoning

is perfectly general. Also observe how the computation is guided at every turn by

(a)–(d).

5Recall: The turquoise box indicates an active link to an article.
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We break up the computation into two steps.

(i) The area of a rectangle with sides 1
4

and 1
7
.

(ii) The area of a rectangle with sides 3
4

and 2
7
.

We begin with (i). To get a rectangle with sides 1
4

and 1
7
, divide the vertical sides

of a fixed unit square into 4 equal parts and the horizontal sides into 7 equal parts.

Joining the corresponding division points, both horizontally and vertically, leads to a

partition of the unit square into 4× 7 (= 28) congruent rectangles, and therefore 28

rectangles of equal areas, by (c). Observe that each small rectangle in this division

has vertical side of length 1
4

and horizontal side of length 1
7
, and is congruent to the

shaded small rectangle in the lower left corner, as shown.

1
7

1
4

What Step (i) asks for is the area of this shaded rectangle. The unit square is now

divided into 28 small rectangles each of which is congruent to this shaded rectangle.

By (c) of page 20, the unit square has been divided into 28 parts of equal area.

Consider the number line where the unit is the area of the unit square; then we have

divided the unit into 28 equal parts. By the definition of a fraction, each one of

these 28 areas represent 1
28

, which is equal to 1
4×7 . In other words, the area of the

shaded rectangle in the lower left corner (with side lengths 1
4 and 1

7 ) is equal to 1
4×7 .

Therefore:

Area of rectangle with sides 1
4 and 1

7 =
1

4× 7
(1)

To perform the computation in Step (ii), we change strategy completely. Instead

of partitioning the unit square, we use small rectangles of sides 1
4

and 1
7

to build a

rectangle of sides 3
4

and 2
7
. By the definition of 3

4
, it is the combination of 3 segments

each of length 1
4
. Similarly, the side of length 2

7
consists of 2 combined segments each

of length 1
7
. Thus we create a large rectangle consisting of 3 rows of small rectangles

22



each of sides 1
4

and 1
7
, and each row has two columns of these small rectangles. This

large rectangle then has side lengths 3
4

and 2
7
.

1
7

1
4

By equation (1), each of the small rectangles has area 1
4×7 . Since the big rectangle

contains exactly 3× 2 such congruent rectangles, its area is (by (d) above):

1

4× 7
+

1

4× 7
+ · · ·+ 1

4× 7︸ ︷︷ ︸
3×2

=
3× 2

4× 7
=

3

4
× 2

7

Therefore the conclusion of (ii) is:

Area of rectangle with sides 3
4 and 2

7 =
3

4
× 2

7

In other words, the area of the rectangle is the product of (the lengths of) its

sides.

The general case follows this reasoning word for word. In most fifth grade class-

rooms, it would be beneficial to state the general formula, as follows. If m, n, k, ` are

nonzero whole numbers, then:

Area of rectangle with sides m
n and k

` =
m

n
× k

`
(2)

Instead of giving an explanation of equation ( 2 ) directly in terms of symbols, it would

probably be more productive to compute the areas of several rectangles whose sides

have lengths equal to reasonable fractions, e.g., 3
2

and 1
5
, 7

3
and 5

6
, etc., and direct

students’ attention to the fact that the reasoning in each case follows a fixed pattern

which then affirms the truth of the general case. 6 Of course one should give the

6There is much talk about using “patterns” to ease students’ entry into algebra. Unfortunately,
it is not often recognized that it is the “thought patterns” like the proofs just described rather than
visual patterns that truly matter in this pedagogical strategy. When all is said and done, Content
Dictates Pedagogy in mathematics education.
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symbolic proof (computation) if the students are up to it.

If students have a firm mastery of the preceding computation, then the concept

of the volume of a rectangular prism will be almost anti-climactic: it is more of the

same (see equation ( 3 ) below). First, the assignment of a number to a (3-dimensional)

solid, called its volume, is qualitatively identical to the case of area. We will make

analogous assumptions on how volumes are assigned to solids:

(a) The volume of a solid is always a number ≥ 0.

(b) The volume of a unit cube (a rectangular prism whose edges all have

length 1) is 1.

(c) If two solids are congruent, then their volumes are equal.

(d) (additivity) If two solids have at most (part of) their boundaries in

common, then the volume of the solid obtained by combining the two is

the sum of their individual volumes.

Again, we will not define “congruent solids” precisely in 5th grade except to appeal to

the intuitive idea that congruent solids are those with the “same size and same shape”.

We want to show that, if a rectangular prism R has edge lengths equal to `, w

and h, and `, w, h are all whole numbers, then the volume of R is the product of

these three numbers, i.e.,

volume R = `× w × h (3)

In the interest of clarity, we will prove the special case ` = 2, w = 3, and h = 4.

The reason for this expository decision is that the reasoning in this special case is

in fact completely general. So let P be a rectangular prism with edge lengths 2, 3,

and 4. Divide each of these edges into segments of unit length. Pass a plane through

corresponding division points of each group of parallel edges, and these planes give

rise to a partition of P into 2× 3× 4 unit cubes because each horizontal layer of unit

cubes has two rows and each row has three columns and therefore each layer has 2×3

unit cubes; moreover, there are 4 such horizontal layers.
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3
2

4

Each unit cube has volume 1 (by (a)), and since there are 2 × 3 × 4 of them, the

additivity of volume (i.e., (d) above) implies that the volume of P is

1 + 1 + · · ·+ 1︸ ︷︷ ︸
2×3×4

= 2× 3× 4,

as desired. It is clear that since the explicit values of 2, 3, 4 played no role in the

preceding argument, we see that equation ( 3 ) is correct.

The next topic—coordinatizing the plane—may be regarded as an extension of

the idea of the number line to the plane. The essence of the number line is to assign

a number to each point on the line, provided 0 and 1 have been fixed on the line. (In

grade 5, we recognize that the “number” in question can only be a fraction, but once

negative numbers have been introduced in grade 6, “number” will refer to all rational

numbers.) Of course, once 0 and 1 have been fixed, it would follow that, conversely,

every number corresponds to a unique point on the line. With this in mind, we are

going to show how to associate an ordered pair of numbers to each point in the plane

provided a pair of perpendicular axes has been fixed in the plane. 7 Conversely, once

such a pair of axes has been fixed, each ordered pair of numbers will correspond to a

unique point of the plane. We will begin by explaining how to associate an ordered

pair of numbers to a point in the plane. The fundamental idea is very simple, and it

is not unlike the way we associate to each house in an rectangular array of streets its

street address: a number and a street name.

Choose two perpendicular lines in the plane which intersect at a point to be

denoted by O. O is called the origin of the coordinate system. Let one of them

7For the gifted students, they can be assigned the task of coordinatizing the plane using any two
intersecting lines.
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be horizontal (i.e., extending from left to right) and let the other be vertical. The

horizontal line is traditionally designated as the x-axis, and the vertical one the y-

axis. We will regard both as number lines and will henceforth identify each point on

these coordinate axes (as the x and y axes have come to be called) with a number.

As expected, we choose the fractions on the x-axis to be on the right of O so that O

is the zero of the x-axis; we also choose the fractions on the y-axis to be above O on

the y-axis so that O is also the zero of the y-axis. These axes divide the plane into

four parts (called quadrants): upper left, upper right, lower left, and lower right.

O

We will associate with each point P in the plane an ordered pair of numbers, but

because we do not as yet have negative numbers, we will limit ourselves to the upper

right portion of the plane, which is usually called the first quadrant. So let P be

a point in the first quadrant. Let us agree to call any line parallel to the x-axis

a horizontal line, and also any line parallel to the y-axis a vertical line. Then

through P draw two lines, one vertical and one horizontal, so that they intersect the

x-axis at a number a and the y-axis at a number b, respectively. Then the ordered

pair of numbers (a, b) are said to be the coordinates of P relative to the chosen

coordinate axes; a is called the x-coordinate and b the y-coordinate of P relative

to the chosen coordinate axes. Observe that the coordinates of O are (0, 0).

X

Y

O

rb r
r
a

P
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Now, by construction, the three angles of the quadrilateral PaOb at the vertices

O, a, and b are right angles. By an observation on page 16 , PaOb is a rectangle.

It follows from another observation on page 16 that the opposite sides of PaOb are

equal (in length). Thus the length of the side bP is equal to the length of the side

Oa. Since by the definition of length on the number line, the length of Oa is just the

number a, we see that the x-coordinate a of the point P is nothing other than the

length of the perpendicular segment Pb from P to the y-axis. Likewise, the length

of the perpendicular segment Pa from P to the x-axis is just the y-coordinate b of

P . The length of the perpendicular segment from a point to a given line is called

the distance of the point from the line. We have therefore obtained a different

interpretation of the coordinates of P when P is a point in the first quadrant:

The x-coordinate of a point P in the first quadrant is the distance of P

from the y-axis and the y-coordinate of P is the distance of P from the

x-axis.

Conversely, with a chosen pair of coordinate axes understood, then given an ordered

pair of fractions (a, b), there is one and only one point in the plane with coordinates

(a, b): this is the point of intersection of the vertical line passing through (a, 0) and

the horizontal line passing through (0, b).

It is common to just identify a point with its corresponding ordered pair

of numbers. In the plane, we define (a, b) = (c, d) to mean that the points

represented by (a, b) and (c, d) are the same point. (This is the analog in the plane

of the definition that two fractions a
b

and c
d

are equal if the points on the number line

represented by a
b

and c
d

are the same point.) Since every point corresponds to one

and only one ordered pair of numbers, we see that

(a, b) = (c, d) is the same as saying a = c, b = d.

A plane in which a pair of coordinate axes have been set up is called a coordinate

plane.

Caution: We should make explicit an assumption about the x- and y-axes that

is usually taken for granted. We will state the assumption using intuitive language,

but the assumption will be put on a firm foundation in high school (see (A7) on page
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131 ). We assume that if we rotate the plane 90 degrees counter-clockwise around

(0, 0), then the numbers on the x-axis coincide with those on the y-axis, i.e., the

unit segments on the two number lines have “the same length”. (To understand the

last statement, recall that the choice of the location of 0 and 1 on a number line is

arbitrary.) Also if we reflect across the angle bisector of the 90◦ angle between the

positive x-axis and the positive y-axis, then the numbers on the x-axis again coin-

cide with those on the y-axis, and vice versa. As will be seen in high school, these

assumptions are of critical importance for understanding the geometry of the plane.

The last major topic of grade 5 has to do with basic definitions of various triangles

and quadrilaterals. Start with triangles. Recall that we defined an isosceles triangle

as a triangle with two equal sides (see page 17 ); this means that so long as it has two

equal sides, it has to be called “isosceles”. In particular, even if the third side is also

equal to the other two (in which case we call it an equilateral triangle; see page 17 ),

it is still an isosceles triangle. This is the standard mathematical usage of the terms

isosceles and equilateral.

For quadrilaterals, there are other notable ones in addition to parallelograms and

rectangles. For the sake of completeness, we list their definitions together. With a

quadrilateral understood, we have:

Trapezoid: One pair of parallel opposite sides.

Parallelogram: Two pairs of parallel opposite sides.

Rectangle: Four right angles.

Square: Four right angles and four equal sides.

Kite: Two pairs of equal adjacent sides. 8

Then: every square is a rectangle, every rectangle is a parallelogram, and every

parallelogram is a trapezoid. A square is always a kite. Moreover, there are kites

that are not squares, there are trapezoids that are not parallelograms, there are

parallelograms that are not rectangles, and finally, there are rectangles that are not

squares.

8Two sides of a quadrilateral are said to be adjacent if they have a vertex in common.
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Many exercises can be given on quadrilaterals and triangles in a coordinate plane

so that the coordinates of their vertices are already given. In simple situations, these

coordinates already allow us to determine if the triangle or quadrilateral has certain

properties, such as rotational symmetry or symmetry with respect to a line.
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GRADE 6

The Number System 6.NS

Apply and extend previous understandings of numbers to the system of ra-

tional numbers.

6. Understand a rational number as a point on the number line. Extend number line

diagrams and coordinate axes familiar from previous grades to represent points on the line

and in the plane with negative number coordinates.

Geometry 6.G

Solve real-world and mathematical problems involving area, surface area, and

volume.

1. Find the area of right triangles, other triangles, special quadrilaterals, and polygons

by composing into rectangles or decomposing into triangles and other shapes; apply these

techniques in the context of solving real-world and mathematical problems.

2. Find the volume of a right rectangular prism with fractional edge lengths by packing

it with [rectangular prisms] of the appropriate unit fraction edge lengths, and show that

the volume is the same as would be found by multiplying the edge lengths of the prism.

Apply the formulas V = `wh and V = bh to find volumes of right rectangular prisms with

fractional edge lengths in the context of solving real-world and mathematical problems.

3. Draw polygons in the coordinate plane given coordinates for the vertices; use co-

ordinates to find the length of a side joining points with the same first coordinate or the

same second coordinate. Apply these techniques in the context of solving real-world and

mathematical problems.

4. Represent three-dimensional figures using nets made up of rectangles and triangles,

and use the nets to find the surface area of these figures. Apply these techniques in the
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context of solving real-world and mathematical problems.

u
Comments on teaching grade 6 geometry

The geometry of grade 6 is, in the main, about areas and volumes. Here will be

found the common area formulas for triangles and quadrilaterals. The importance of

the area formula for triangles is that it allows us, at least in principle, to compute

the area of any polygon by “triangulation” (see page 38 ). In addition, along with the

area formula for rectangles with side lengths that are fractions, we will also give the

corresponding volume formula for rectangular prisms whose edge lengths are fractions.

We will also mention the four quadrants of the coordinate plane, the computation

of lengths of horizontal and vertical segments in a coordinate plane, nets, and the

definitions of tetrahedra and pyramids.

We begin by recalling the basic assumptions about what we call area. They were

already mentioned in grade 5 and there are four of them:

(a) The area of a planar region is always a number ≥ 0.

(b) The area of a unit square (a square whose sides have length 1) is by

definition the number 1.

(c) If two regions are congruent, then their areas are equal.

(d) (Additivity) If two regions have at most (part of) their boundaries in

common, then the area of the region obtained by combining the two is the

sum of their individual areas.

The whole discussion in this sub-section hinges on the simple statement that

Area of rectangle = product of the (lengths of the) sides (4)

The validity of this formula when the lengths of both sides are fractions is exactly

the content of equation ( 2 ) on page 23 . Students should be formally told at this

point that there are numbers which are not fractions (they have probably heard of π
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and it would make sense to let them know that π is not a fraction). So the message

of equation ( 4 ) is that the area of a rectangle is always the product of its sides no

matter what the lengths of the sides may be. 9

It is astonishing how much useful information can be extracted from the simple

formula ( 4 ) alone. We will show how to exploit this area formula to compute the

areas of triangles, parallelograms, trapezoids, and in fact any polygon (at least in

principle).

We begin with triangles. Consider a right triangle 4ABC with AB ⊥ BC. We

compute its area by expanding it to a rectangle, as follows. Let M be the midpoint

of AC.

HH
HHH

HHH
HHH

HHH
HH

B

A

C

D

qM

We observe that if we do a rotation of 180◦ around M , then the rotation interchanges

A and C and moves B to the position D as shown. We will take for granted that

such a rotation moves a triangle to a congruent one (“with the same size and same

shape”) and therefore one with the same area (by (c)). 10 Now use the fourth bullet

on page 15 to explain why all the angles of the quadrilateral ABCD are right angles

and therefore ABCD is in fact a rectangle. Therefore, by the additivity of area (i.e.,

(d) above),

area (ABCD) = area (4ABC) + area (4CDA)

= area (4ABC) + area (4ABC)

= 2 · area (4ABC).

9Strictly speaking, we are invoking the formal extension of the formula area of rectangle = product
of the side lengths from fractional side lengths to side lengths that are arbitrary numbers by using
the Fundamental Assumption of School Mathematics. See page 88 of H. Wu, Pre-Algebra .

10This is a wonderful opportunity to prepare students for geometry in grade 8.
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It follows that

area(4ABC) =
1

2
area(ABCD).

At this point, it becomes necessary to use a symbol, |AB|, to denote the length of a

segment AB. By equation ( 4 ), we get,

area(4ABC) =
1

2
|AB| · |BC|.

The sides AB and BC flanking the right angle in a right triangle are called the legs

of 4ABC. We therefore have:

Area of right triangle =
1

2
(product of (the lengths of) its legs) (5)

Now suppose 4ABC is not a right triangle. Let AD be the altitude from the

vertex A to line BC, i.e., AD is the segment which joins A to line BC and is per-

pendicular to line BC). If D = B or D = C, then 4ABC would be a right triangle,

contradicting the hypothesis. So we may assume that D 6= B and D 6= C. Then

we obtain two right triangles, 4ABD and 4ACD, so that equation ( 5 ) becomes

applicable to each of them. There are two cases to consider: the case where D, the

foot of the altitude, is inside the segment BC, and the case where D is outside

segment BC. See the figures:

A
A
A
A
A
A

"
"
"
"
"
"
"
"
"
"

h

DB C

A

�
�
�
�
�
�
�
�

�
�
�
�
�
��

h

B C

A

D

In either case, AD is called the height with respect to the base BC. By the usual

abuse of language, height and base are also used to signify the lengths of AD and

BC, respectively. With this understood, we shall prove in general that

Area of triangle =
1

2
(base × height) (6)

For convenience, we shall use h to denote |AD|. Then this is the same as proving

area(4ABC) =
1

2
|BC| · h
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In case D is inside BC, we use the additivity of area ((d) on page 31) and refer to

the figure above to derive:

area(4ABC) = area(4ABD) + area(4ADC)

=
1

2
|BD| · h+

1

2
|DC| · h

=
1

2

(
|BD|+ |DC|

)
h (by the dist. law)

=
1

2
|BC| · h

Incidentally, here as well as in the computation for the second case (D is outside BC),

we see how important it is to know the distributive law. One cannot overstate the

need for students from grade 5 and up to be fluent in the use of this law.

In case D is outside BC, we again use the additivity of area and refer to the figure

above to obtain:

area(4ABD) = area(4ACD) + area(4ABC)

This is the same as

1

2
|BD| · h =

1

2
|CD| · h+ area(4ABC).

Therefore,

area(4ABC) =
1

2
|BD| · h− 1

2
|CD| · h

=
1

2

(
|BD| − |CD|

)
h (by the dist. law)

=
1

2
|BC| · h

Thus the area formula for triangles has been completely proved.

Almost all school math textbooks mention the first case but not the second in

deriving equation ( 6 ). Looking forward to the proofs of the area formulas for paral-

lelograms and trapezoids below, one realizes that this omission creates a crucial gap

in students’ understanding of these formulas.

Next the area of a parallelogram ABCD. Drop a perpendicular from A to the

opposite side BC. Call it AE. In view of equations ( 4 ) and ( 5 ), we may assume

E 6= B or C. Then two cases are possible, as shown below.
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AE is called the height of the parallelogram with respect to the base BC. From

the second bullet on page 15 , we know that |AE| does not change if another point on

AD replaces A. As before, height and base are also used to designate the lengths of

these segments. The formula to be proved is then:

Area of parallelogram = base × height (7)

The following proof of equation ( 7 ) works for both cases, and it goes as follows. Draw

the diagonal AC (see page 15 for a definition) and let M be the midpoint of AC.
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One verifies by hands-on experiments (e.g., cardboard cut-outs) that the rotation of

180◦ around M moves 4ABC to 4CDA. So as usual, we conclude that 4ABC
is congruent to 4CDA and therefore, (c) of page 31 implies that area(4ABC) =

area(4CDA). By (d) of page 31 , we therefore have:

area(ABCD) = area(4ABC) + area(4CDA)

= 2 · area(4ABC)

= 2 · 1

2

(
|BC| · |AE|

)
= |BC| · |AE|

as desired. Note how, in the second case, we need equation ( 6 ) to be still valid when

the foot of the altitude falls outside the base.
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We also get the formula for the area of a trapezoid ABCD with AD ‖ BC. Let

DE ⊥ BC. Again, in view of equations (4 ) and (5 ), we may assume E 6= B or C.
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Then note that |DE|, being the distance between the parallel lines LAD and LBC , is

the height of both 4ABD with respect to the base AD and 4BCD with respect to

base BC, and is called the height of the trapezoid. Again we denote this height

by h. The segment AD and BC are called the bases of the trapezoid. We are

going to prove that the area of a trapezoid is 1
2

the height times the sum of bases.

Precisely,

Area(ABCD) =
1

2
h
(
|AD|+ |BC|

)
It is of some interest to observe that when the trapezoid ABCD is a parallelogram

(i.e., when AB is also parallel to CD), this area formula reduces to equation (7 ).

Indeed, in this case, we saw on page 35 that 4ABC is congruent to 4CDA so that

in particular, BC and AD have the same length and the preceding formula becomes

Area(ABCD) =
1

2
h
(
|BC|+ |BC|

)
=

1

2
h (2|BC|) = h |BC|.

This is exactly equation (7 ). Incidentally, this is one reason why we want a par-

allelogram to be a trapezoid (see the discussion on page 28 ) because mathematical

theorems about quadrilaterals such as these area formulas then make sense. As to

the proof of the trapezoid area formula, we have

Area(ABCD) = area(4BAD) + area(4BDC)

=
1

2
h · |AD|+ 1

2
h · |BC|

=
1

2
h
(
|AD|+ |BC|

)
(by the dist. law),

as claimed. Note once again that in this proof, we need the area formula of a triangle

when the foot of the altitude falls outside the given base. This is why one must know
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the proof of the area formula of a triangle for this case too.

At this point, students need to be exposed to some general facts about n-gons, or

polygons, including a correct definition. The general definition of a polygon requires

the use of subscripts to denote the vertices. So for sixth grade, it is enough to define

a pentagon and a hexagon and wave hands a bit. A 3-gon is a triangle, and a 4-gon

is a quadrilateral. A 5-gon, called a pentagon, is defined to be a geometric figure

with 5 distinct points A, B, C, D, E in the plane, together with the 5 segments AB,

BC, CD, DE, and EA, so that none of these segments intersects the others except

at the endpoints as indicated, i.e., AB intersects BC at B, BC intersects CD at C,

etc. In symbols: the pentagon will be denoted by ABCDE. Here are some examples

of pentagons.

A

C

A

B

D

E

E

E

D

D

C

C
B

B

A

In the same way, a 6-gon, called a hexagon, is a geometric figure with 6 distinct

points A, B, C, D, E, F in the plane, together with the 6 segments AB, BC, CD,

DE, EF , and FA so that none of these segments intersects the others except at the

endpoints as indicated, i.e., AB intersects BC at B, BC intersects CD at C, etc.

In symbols: the hexagon will be denoted by ABCDEF . Here are some examples of

hexagons:

F
F

F

D
D

E
E

AA

C

B

B

C

A

B

C

D

E
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In general, for any positive integer n, an n-gon, more commonly called a polygon,

can be similarly defined. What we wish to observe is that, once we know how to

compute areas of triangles, then the area of any polygon can be computed—at least

in principle—through the process of triangulation. It is not necessary to define

precisely, in sixth grade, what a triangulation is, because we just want to give students

a general idea and, for this purpose, some picture-drawing is quite sufficient. As the

name suggests, what we do is to partition any polygon into a collection of triangles

which intersect each other at most on their boundaries. Since the areas of these

triangles can be computed, we can apply repeatedly the additivity of area (see (d)

on page 31 ) to get the area of the polygon itself. Let us illustrate with the above

hexagons. Here are some of the possible triangulations.

O

F

F

D
D

E
E

AA

C

B

B

C

A

B

C

D

E
F

Thus for the hexagon ABCDEF on the left, its area is the sum of the areas of

4OAB, 4OBC, 4OCD, 4ODE, 4OEF, 4OFA.

For the hexagon ABCDEF in the middle, its area is the sum of the areas of

4ABF, 4BCD, 4BDE, 4BEF.

As to the hexagon ABCDEF on the right, its area is the sum of the areas of

4ABF, 4BFD, 4BCD, 4DEF.

Be sure to take note of the fact that there are other possible triangulations in each

case. For example, the hexagon on the left can also be triangulated by joining the

vertex A to C, A to D, and A to E. On the other hand, the triangulations of the

other two hexagons illustrate the complications in obtaining a triangulation: while it
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can be done, there is no simple algorithm to always get it done.

Next, we revisit the volume of a rectangular prism. Recall that the assignment

of a number to a (3-dimensional) solid, called its volume is conceptually identical to

the case of area. We have the analogous assumptions on how volumes are assigned

to solids (see page 24 ):

(a) The volume of a solid is always a number ≥ 0.

(b) The volume of a unit cube (a rectangular prism whose edges all have

length 1) is by definition 1 cubic unit.

(c) If two solids are congruent, then their volumes are equal.

(d) (additivity) If two solids have (at most part of) their boundaries in

common, then the volume of the solid obtained by combining the two is

the sum of their individual volumes.

Again, we will not define “congruent solids” precisely in sixth grade except to appeal

to the intuitive idea that congruent solids are those with the “same size and same

shape”.

We want to show that, if a rectangular prism R has edge lengths equal to `, w

and h, and `, w, h are all fractions, then the volume of R is the product of these

three numbers, i.e.,

volume R = `× w × h (8)

In the interest of clarity, we will prove the special case ` = 3
2
, w = 2

3
, and h = 5

4
. The

reason for this expository decision is that the reasoning in this special case is in fact

completely general. As in the case of area, we break up the reasoning into two steps.

(i) The volume of a rectangular prism with edge lengths 1
2
, 1

3
, and 1

4
is

1
2
× 1

3
× 1

4
.

(ii) The volume of a rectangular prism with edge lengths 3
2
, 2

3
, and 5

4
is

3
2
× 2

3
× 5

4
.

For step (i), divide each of the three groups of parallel edges of a fixed unit cube

into 2 equal parts, 3 equal parts, and 4 equal parts, respectively. For example, in
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the following picture, each of the group of four vertical edges is divided into 4 equal

parts. Pass a plane through the corresponding division points, as shown. (Recall in

the following picture that the cube is a unit cube and therefore each edge has length

1.)

1/3
1/4

1/2

These planes partition the unit cube into twenty-four (= 2× 3× 4) congruent small

rectangular prisms, and thus 2 × 3 × 4 prisms of equal volume (see (c) above). By

(d) above, the sum of the volumes of these 2× 3× 4 prisms is equal to the volume of

the unit cube, which is 1 (see (b)). Thus by the definition of a fraction, relative to a

unit 1 that is the volume of a unit cube, the volume of one of these prisms, such as

the thickened prism in the preceding picture, is the fraction

1

24
=

1

2× 3× 4
.

Because by construction, the edges of the thickened rectangular prism in the preceding

picture have lengths 1
2
, 1

3
, and 1

4
, we have finished explaining why (i) is correct.

Now part (ii). As with the case of area, we now ignore the unit cube and, instead,

build a rectangular prism P whose edge lengths are 3
2
, 2

3
, and 5

4
by starting with the

above thickened small rectangular prism with edge lengths 1
2
, 1

3
, and 1

4
. To this end,

take three rows of these small prisms with two columns in each row; place them on a

plane with the edges of length 1
4 pointing up vertically, as shown in the picture below,

to obtain a rectangular prism whose edge lengths are 3
2
, 2

3
, and 1

4
. Now place 5 such

layers on top of each other to get a rectangular prism whose edge lengths are now 3
2
,

2
3
, and 5

4
; this is the prism P we are after, as shown below:
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5/4

1/4

1/2

1/3

2/3

3/2

The volume of the rectangular prism with side lengths 1
2
, 1

3
, and 1

4
is 1

2×3×4 , by part

(i). Since there are 30 (= 3× 2× 5) of these prisms in P , the volume of P is thus

1

2× 3× 4
+ · · · · · ·+ 1

2× 3× 4︸ ︷︷ ︸
3×2×5

=
(3× 2× 5)× 1

2× 3× 4
=

3

2
× 2

3
× 5

4

Note the critical fact about fraction multiplication that we have just used: the product

formula, to the effect that ac
bd = a

b ×
c
d (see pp. 47–48 of H. Wu, Teaching Fractions

According to the Common Core Standards for a proof).

The general explanation of equation ( 8 ) is entirely the same, and this can be seen

from the fact that the preceding reasoning for the special case of ` = 3
2
, w = 2

3
, and

h = 5
4

never makes use of the explicit values of 3
2
, 2

3
, or 5

4
.

In discussing area or volume, the role of property (c) (congruent figures give rise to

the same area or volume) and property (d) (additivity) should be emphasized through

the use of exercises that ask for the computations of areas of planar regions and vol-

umes of solids formed by assembling congruent rectangles and rectangular solids of

varying sizes. In particular, this will make students aware, at an early age, of the

fundamental importance of the concept of congruence.

Next, we expand on the concept of coordinatizing the plane using rational num-

bers. Recall from grade 5 that our work with coordinates thus far has been limited to

the first quadrant (page 26 ) because when a line passing through a point P parallel

to a coordinate axis intersects the other axis, we had to make sure that the point of

intersection was a fraction. In other words, we had to make sure that the coordinates

of P are bigger than or equal to 0. In grade 6, however, we have rational numbers
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and we are no longer concerned with the location of the point of intersection of a

line with a coordinate axis, so everything we said in grade 5 about coordinates, when

suitably modified, will continue to hold. In particular, the analog of the interpretation

of coordinates on page 27 is the following:

If the coordinates of a point P are (p, p′), then |p| (respectively, |p′|) is the

distance of P from the y (resp. x) axis.

The computation of the distance between two points in terms of their coordinates

has to wait for the Pythagorean Theorem. There is a special situation, however, that

allows for such a computation without the Pythagorean Theorem, and this is our next

concern. Given a coordinate system in the plane, let AB be a horizontal segment

in the sense that it lies on a horizontal line. We want to compute the distance between

A and B, i.e., the length |AB| of AB, in terms of the coordinates of A and B. Since

AB is horizontal, the line L containing AB is parallel to the x-axis by definition.

We know that the distances of A and B to the x-axis are equal; thus in the pictures

below, |Aa| = |Bb|. Since opposite sides of a rectangle are equal (page 16 ), we know

that the y-coordinates of A and B are equal, say y0. Thus the coordinates of A and

B must be (a, y0) and (b, y0), respectively. If a or b is equal to 0, for example if a = 0,

then the distance between A and B is just |b|, by the definition of absolute value and

there would be no need to compute. So we may assume a, b are nonzero. Now there

are two cases.

Case 1: a < 0 < b. Then

|AB| = (distance from a to 0) + (distance from 0 to b) = |a|+ |b|.

r r
ba O

A By0

x

y

Case 2: a < b < 0 or 0 < b < a. Then

|AB| = (distance from a to 0) − (distance from 0 to b) = |a| − |b|.
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r r
ba O

A B y0

x

y

rr
b aO

ABy0

x

y

What is worth pointing out is that, when students learn about the subtraction of

rational numbers in grade seven, then both formulas above will be subsumed under

one simple formula:

The distance between two points (a, y0) and (b, y0) on a horizontal line

= |a− b|

Such a formula gives a partial explanation of why it is desirable to learn about absolute

value and subtraction of rational numbers.

The case of points on a vertical line can be treated in the same way. Thus:

The distance between two points (x0, a) and (x0, b) on a vertical line

=

{
|a|+ |b| if a < 0 < b
|a| − |b| if a < b < 0 or 0 < b < a.

In the terminology of 7th grade mathematics, we have:

The distance between two points (x0, a) and (x0, b) on a vertical line

= |a− b|

Finally, a word about surface areas of solids. For rectangular prisms, the boundary

of the prism consists of six rectangles. By the additivity property of area (see (d) of

page 31 )11, the total area of the boundary is the sum of the areas of these rectangles;

since the equation ( 4 ) on page 31 gives the area of any one of these rectangles, one

can add up these areas to get the total area. This total area is what is known as the

surface area of the prism. Nets are sometimes used to help students visualize this

surface to ease the computation of surface area. We will not go into any discussion of

nets here for the simple reason that this is one example where interactive materials

are much more instructive than verbal explanations. Click on the following link, for

example, to see the nets of the most common solids:

11Strictly speaking, we need a generalized version of the additivity property as stated on page 31
because we are now talking about regions that are no longer lying in a plane.
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Surface Area Interactive

In everyday life, there are also solids whose boundaries consist of geometric figures

that are not rectangles. The simplest of these are tetrahedra and pyramids, and we

define them as follows.

Let two parallel planes12 be given. We may think of these planes as “horizontal”

ones, with one called the top plane and the other the bottom plane. Let P be a point

in the top plane, then the collection of all the segments joining P to points of a planar

region R in the bottom plane is a solid S. The point P is called the top vertex of S
and R the base of S. Here are two examples of such a solid, where the base is fixed

in the bottom plane but the vertex assumes two different positions in the top plane.

P

P

If the base R is a square, then the solid S is called a pyramid (see the two pictures

on the left below). If the top vertex of a pyramid lies on the line perpendicular to the

base at the center of the square (the intersection of the diagonals), the pyramid is

called a right pyramid (see picture second from left below). If the base is a triangle,

the solid S is called a tetrahedron (see the two pictures on the right below). If the

base is an equilateral triangle and all the other three triangles on the boundary are

congruent to the base, the tetrahedron is called a regular tetrahedron (see picture

on the right). It is known that the top vertex of a regular tetrahedron lies on the line

perpendicular to the base passing through the center, which in this case is the point

of intersection of the three medians13 of the base.

12These are, by definition, planes that do not intersect, such as the planes containing the top and
bottom of a rectangular prism.

13A median of a triangle is, by definition, a segment joining a vertex to the midpoint of the
opposite side.
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To compute the surface area of a right pyramid, for example, we can look at the net

of the pyramid in this case. It is intuitively acceptable that the four edges above the

base are all of the same length. Assuming this, if we cut the boundary of the right

pyramid along all the edges coming out of the top vertex and then “flatten out” the

boundary and lay it on the bottom plane of the base, we get the following plane figure

whose eight boundary edges are all of the same length, say s:

s

ss

s

s

s s

s

If we denote the length of the side of the base square by a, then it is possible to

compute the surface area of the right pyramid in terms of s and a. But right now

we don’t have the necessary tools (the Pythagorean Theorem, which will be proved

on page 100 , or better yet, Heron’s formula ) so the only way the surface area can

be computed is if the height of any one of the triangles (indicated by the magenta

segment in the picture above) is also given. Let us say it is h. Then using equations

(4) and (5) on pages 31 and 33, we get that the surface of this particular right pyramid

is

a2 + 4(
1

2
ha) = a(a+ 2h).
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GRADE 7

Geometry 7.G

Draw, construct, and describe geometrical figures and describe the relation-

ships between them.

1. Solve problems involving scale drawings of geometric figures, including computing

actual lengths and areas from a scale drawing and reproducing a scale drawing at a dif-

ferent scale.

2. Draw (freehand, with ruler and protractor, and with technology) geometric shapes

with given conditions. Focus on constructing triangles from three measures of angles or

sides, noticing when the conditions determine a unique triangle, more than one triangle,

or no triangle.

3. Describe the two-dimensional figures that result from slicing three- dimensional

figures, as in plane sections of right rectangular prisms and right rectangular pyramids.

Solve real-life and mathematical problems involving angle measure, area, sur-

face area, and volume.

4. Know the formulas for the area and circumference of a circle and use them to solve

problems; give an informal derivation of the relationship between the circumference and

area of a circle.

5. Use facts about supplementary, complementary, vertical, and adjacent angles in a

multi-step problem to write and solve simple equations for an unknown angle in a figure.

6. Solve real-world and mathematical problems involving area, volume and surface

area of two- and three-dimensional objects composed of triangles, quadrilaterals, polygons,

cubes, and right prisms.
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u
Comments on teaching grade 7 geometry

We will concentrate on the three key ideas in this grade, namely:

the meaning of “scale drawing”,

the need to develop students’ geometric intuition, and

the area and circumference formulas of a circle.

The kind of problems mentioned in standards 5 and 6 of Geometry 7.G are by com-

parison more routine and therefore will get short shrift for now. (But keep in mind

the distance formula in terms of rational number subtraction on page 43 ).

Scale drawings

Like many concepts in school mathematics, the concept of “scale drawing” is

used indiscriminately and students routinely get tested about “scale drawings” on

standardized tests without ever being told what a “scale drawing” is. The reason for

this monstrous state of affairs is that, without the concept of similarity (which will be

taken up in grade 8 and high school) it is not easy to give a simple definition of this

concept. What we will do is to give an intuitive definition of “scale drawing” that

is appropriate for grade 7, and leave the precise definition in terms of the concept

of similarity to grade 8 (see page 93 ). Here is the easy part: if you are given a

scale drawing of a real-life object (usually a car, a staircase, etc.), what it means is

that you have to imagine that the three-dimensional object has been captured, in

exactly the same size, as a two-dimensional image in a picture.14 Then the so-called

scale drawing refers to a reduced-size picture or an enlarged-size picture of that

two-dimensional picture (but NOT of the three-dimensional object). We repeat: a

scale drawing is either the reduction or the magnification of a two-dimensional picture,

never the three-dimensional object itself.

Now the hard part: how to explain “reduction” or “magnification” in two dimen-

sions. To this end, we adopt a procedure that is standard in mathematics: imagine

14Think of the gigantic pictures on some bill boards, for example.
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that we have enlarged a picture (by using the “magnification” feature of a xerox ma-

chine or the same feature of geometry software) and then we compare it with the

original picture to isolate some observable characteristics of the enlargement. We are

not saying we already know what “enlargement” means; rather, we try to find out

what it could mean by looking at something we all agree is already enlarged. Then

we turn around and use these observed characteristics to define “magnification”. So

suppose we already have a picture of a house and a tree, to be called S; see the picture

on the right below. Let the left picture (to be denoted by S ′) be an “enlargement”,

in the intuitive sense, of S. Then it is not difficult to see that, in the process of

enlargement, a point in the right picture S goes to one and only one point in S ′ on

the left. For example, the point A in S goes to the point A′ in S ′, the point B in S
goes to the point B′ in S ′, etc.

P

.

.

.

.

.

A

B

C

D

E

P

.

.

.

.

.

A

B

C

D

E

Put differently, there is a precise pairing of each point of S on the right to one and

only one point of S ′ on the left, and also of each point of S ′ on the left to one and

only one point of S on the right. Thus we may symbolically represent this pairing as

A ↔ A′, B ↔ B′, . . . , E ↔ E ′, and so on, for every point in either picture. Such

pairing is an example of what is known as a one-to-one correspondence. But we can

go further, it is intuitively clear that the paired points enjoy the property that the

“enlarged distances are proportional to the original distances” in the following sense:

if we use |AB| to denote the distance between A and B as usual, then:

|A′B′|
|AB|

=
|A′C ′|
|AC|

= . . . =
|A′E ′|
|AE|

=
|B′C ′|
BC|

= · · · = |D
′E ′|
|DE|

,
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and this proportional relationship is supposed to hold no matter what points A, B,

. . . in the original picture S are chosen. The number common to these ratios is called

the scale factor, usually denoted by r. Thus

|A′B′|
|AB|

=
|A′C ′|
|AC|

= · · · = r

Such a proportional relationship between points in the two pictures will turn out to

be the key feature that makes one picture an enlargement of the other. This is a high-

level mathematical insight and you shouldn’t worry about it if you didn’t discover this

yourself. All of us must learn from the wisdom of the past.

Obviously it is not important that these two pictures lie in the same plane; if they

lie in different planes, we can also carry out the same discussion.

If the scale factor r is bigger than 1, S ′ is called a magnification of S; if r < 1,

then S ′ is called a reduction of S. What we have above is (visibly) a magnification.

Of course if r = 1, then by definition, distances between points do not change; in

this case, such a scale drawing turns out to be what we call a congruence. See the

discussions on page 65 and page 79 .

Now back to the intuitive definition of scale drawing. Two geometric figures, S
and S ′, each lying in a plane, are said to be in one-to-one correspondence if there

is a pairing between the points in S and the points S ′ so that, each point P of S
is paired with one and only one point P ′ in S ′ and, likewise, each point Q′ in S ′ is

paired with one and only one point Q in S.

Now suppose two geometric figures S and S ′ are given, each lying in a plane.

We say S ′ is a scale drawing of S with scale factor r if there is a one-to-

one correspondence between S and S ′ so that, under the pairing of this one-to-one

correspondence, the distance |PQ| between any two points P and Q of S is related

to the distance |P ′Q′| between the two corresponding points P ′ and Q′ of S ′ by the

equality
|P ′Q′|
|PQ|

= r .

Note that the essential feature of a scale drawing is that this equality holds true no

matter what the points P and Q may be. One can check, by direct measurements,

that for the two house-and-tree pictures above, the left picture is a scale drawing of
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the right picture with scale factor 5
3
.

A typical problem in this context is the following. Referring to the two pictures

above, suppose we only know that the left picture is a scale drawing of the right, and

|B′D′| = 60 mm, |BD| = 36 mm. If the height of the house on the right (defined

to be the distance from the point P to the point Q which is the intersection of the

vertical line from P with the bottom edge of the house below P , as shown) is 15 mm,

what is the height of the house on the left?

E

.

.

.

.

.

A

B

C

DP

Q
Q

.

.

.

.

.

A

B

C

D

E

P

Knowing that the house on the left is a scale drawing of the house on the right, we

know
height of left house

height of right house
= r

where r is the scale factor of the scale drawing. The reason is that if the vertical line

from P ′ meets the bottom edge below it at a point Q′, then P corresponds to P ′ and

Q corresponds to Q′ in the one-to-one correspondence, and therefore by the definition

of a scale drawing, we have
|P ′Q′|
|PQ|

= r .

For the same reason,
|B′D′|
|BD|

= r .
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We therefore have the proportion

|P ′Q′|
|PQ|

=
|B′D′|
|BD|

because both sides are equal to r. Since |PQ| = 15 mm, |BD| = 36 mm, and

|B′D′| = 60 mm, we have
|P ′Q′|

15
=

60

36
,

so that |P ′Q′| = 25 mm, i.e., the height of the left house is 25 mm.

It should be remarked that the proportion
|P ′Q′|
|PQ| =

|B′D′|
|BD| is a logical consequence

of the given hypothesis that we have a scale drawing and the fact that we have a pre-

cise definition of “scale drawing” in terms of the concept of “pairing”. What we have

done is to demonstrate how the teaching of mathematics can be done by (i) first

giving students sufficient precise information (i.e., an explicit hypothesis), and (ii)

asking them to use reasoning to make logical deductions from the given hypothesis.

Pedagogical Comments: If we seem to be belaboring the point, it is because

the way problems related to scale drawings are posed and solved in textbooks does

not make any mathematical sense: there is no explanation of what a “scale drawing”

means, yet students are asked to do scaling problems. This is simply defective math-

ematics education; in mathematics, one cannot reason on the basis of something not

yet clearly defined. When students fail to preform in this environment, such inevitable

failures then become topics in education research about students’ weak basic skills

and lack of problem-solving ability. (One such example is Case 3 in K. K. Merseth,

Windows on Teaching Math, Teachers College Press, 2003.) At least in this instance,

education research is treating the symptom and not the disease.

Developing geometric intuition

At this stage of students’ learning trajectory, teachers should help students develop

geometric intuition by drawing many pictures. Now “geometric intuition” is not a

measurable quantity, so it is difficult to say whether one has “enough” geometric

intuition or not. Nevertheless, one can say that, if asked to sketch a scale drawing

with scale factor 2 of the triangle on the left, a student draws the triangle on the

right, then her geometric intuition would need further development.
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Students should also acquire the intuition, through extensive drawings, of why the

classic criteria for triangle congruence—SAS, ASA, SSS—are correct, and why ASS,

for example, is not. Consider SAS, once the angle and the lengths of its two adjacent

sides are fixed, clearly the three vertices of the triangle are completely determined so

that the congruence of two triangles both satisfying the conditions of SAS should not

come as a surprise.

On the other hand, the following two triangles, 4ABC and 4ADC, have two pairs

of equal sides and a pair of equal angles, as indicated, but they are clearly “different”,

no matter how “different” is defined. So ASS cannot be true.

C

A

DB C

A

B D

It remains to make a passing comment on Standard 7.G 3:

Describe the two-dimensional figures that result from slicing three-dimensional

figures, as in plane sections of right rectangular prisms and right rectangular

pyramids.
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The general idea behind studying the slicing of a right rectangular prism by a plane

is the standard method of approaching a geometric figure of a certain dimension by

first studying its “sections” of one dimension lower. For example, we will get to know

something about a triangle by looking at various line segments in it, e.g., angle bisec-

tors, medians, etc., and we will also discover some properties of a circle by inspecting

its various chords and radii. Therefore, to study a sphere or a cone, we look at their

intersections with a plane, thereby obtaining circles in the former case, and circles,

ellipses, parabolas and hyperbolas in the latter case. For this reason, looking at the

plane sections of a rectangular prism is just an illustration of the attempt to develop

students’ three-dimensional geometric intuition but is not intended to be a subject

to be pursued in depth. In any case, there are many websites with excellent graphics

to illustrate what one can get by slicing a solid. See, for example, the solution to

Problem C1 on Learning Math . 15

Circumference and area of a circle

Although we have made use of circles since grade 4, this is the opportunity to

formalize the terminology of the center, radius and diameter of a circle before

embarking on a rather extensive discussion about the circle. Notice that, because

of tradition, there is a tremendous abuse of language here: “circle” is of course the

round curve, but “area of a circle” actually refers to the “area of the region inside

the circle”. Because of the very real danger of confusion, we hereby adopt a more

reasonable terminology in this document: given a circle of radius r, we call the region

inside the circle the disk of radius r and denote it by D(r). The circle itself we

denote by C(r).

Caution: We will be talking about the “area of D(r)” and the “length of C(r)”

presently, and there are some things we must be clear about at the outset. The con-

cepts of the length and area of rectilinear objects were taken up in grade 6 (page

31 ). Because the concepts of “area” and “length” are part of everyday language,

the familiarity with these words can easily delude us into believing that we know the

meanings of the “area of a disk” and “length of a circle”. A little thought would

reveal that the precise meanings of the area and length of curvy objects such as the

15Reminder: this is an active link. Just click on it.
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disk or the circle are anything but simple, and so long as we need precise meanings

of the concepts we use in mathematics, we are forced to admit that we really don’t

know what these concepts mean. A main goal of the CCSS in grade 7 is to take a

first step in getting to know these sophisticated mathematical concepts. Anticipating

the discussion on page 56 , we will freely avail ourselves of these terms for the time

being.

The length of C(r) is called its circumference. The fundamental relation be-

tween the area of the disk and the circumference is this:

area of D(r) =
1

2
(circumference of C(r)) · r (9)

We will give an informal derivation of equation ( 9 ) presently. However, we will

assume equation ( 9 ) for the moment and proceed to show why this equation is fun-

damental. The following sequence of derivations may not be well-known in school

mathematics, but it is simple as well as mathematically enlightening; it deserves to

gain a firm foothold in the school curriculum.

First, we introduce the number π as the area of the unit disk, i.e., the disk of

radius 1. In other words,

π
def
= area of D(1)

Caution: Here, we are giving the precise meaning of π for the first time as the

area of the unit disk. There is an inherent danger that, because you have heard the

number π mentioned so often in daily conversations or popular writings that you

begin to imagine you already know what it is. In that case, you would look at the

equality, π = area of D(1), as something that needs an explanation. But no expla-

nation can be given in this case because, up to this point, we do know what π is but

are introducing π for the first time as the symbol that stands for the area of the unit

disk D(1). However, the usual relationship of π with the circumference (see equation

( 12 ) below) will then become something whose truth we must explain.

Our job now is to go on from here and get to know π just a little bit. First, we
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will show informally that for all r > 0,

area of D(r) = r2 (area of D(1)). (10)

Since the area of D(1) is now denoted by π, we get from equation ( 10 ) the well-known

area formula of a disk:

area of D(r) = πr2 (11)

But by equation ( 9 ), πr2 = 1
2
(circumference of C(r))·r. The following circumference

formula now follows immediately:

circumference of C(r) = 2πr (12)

Recall that the number 2r (twice the radius) is called the diameter of the circle of

radius r. Therefore equation ( 12 ) implies that

π =
circumference of C(r)

diameter

This is the usual interpretation of the number π, but in terms of pedagogy, there is

an excellent reason why π should be defined as the area of the unit disk as we have

done. The reason will be explained in the high school course (page 149 ).

We now give the informal arguments for equations ( 9 ) and ( 10 ). To this end, the

first order of business is to give meaning to the concepts “area of a disk” and “length

of a circle”. They may be intuitive, but they turn out to be mathematically very

subtle. We have to be content with oversimplified versions of the correct definitions

of the area of a disk and the length of a circle.

A polygon (see page 38 ) is said to be regular if its vertices lie on a circle and

all its sides are equal;16 we then also say that the regular polygon is inscribed in

that circle. Let Pn be a regular n-gon (see page 38 ) inscribed in C(r). The following

shows the case of n = 6 for a disk with center O:

&%
'$pO
T
T

�
�

T
T

�
�

16This is not the standard definition of a regular polygon, but is equivalent to it. Moreover, this
may be the simplest definition for use in the school classroom.
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It is intuitively clear that as n gets larger and larger without bounds, Pn gets closer

and closer to C(r) and the region inside Pn becomes virtually indistinguishable from

the disk D(r). Because the area of Pn is something we know how to compute through

triangulation (see page 38 ), it makes sense then to define the area of D(r) to be

the limit of the area of (the region inside) Pn as n increases without bounds. Here we

have to be vague about the precise meaning of “limit”, except to point out that it is

one of the central concepts of advanced mathematics.

Next we explain the meaning of “length of C(r)”. The perimeter of a polygon

is by definition the sum of the lengths of its sides. Then using the notation of the

preceding paragraph, we define the length of C(r) to be the “limit” of the perimeter

of Pn as n gets arbitrarily large, in the sense that as n gets larger and larger, the

perimeter of Pn will be observed to get closer and closer to a certain number and this

number is what we mean by the “length of C(r)”.

We can now compute the length of C(r). Letting as usual the center of D(r) be

O, let us join O to two consecutive vertices A and B of Pn to form a triangle OAB:

�
�
�
�
�
�
�
�
��

E
E
E
E
E
E
E
E
EE

O

A B

h

From O we drop a perpendicular to side AB of 4OAB and we denote the length

of this perpendicular by h. If we denote the length of the segment AB by sn (the

subscript n here indicates that it is the length of one side of Pn), then the area of

4OAB is 1
2
snh, by equation ( 6 ) on page 33 . Now remember that 4OAB is one of

n congruent triangles which “pave” Pn, so the area of Pn is n(1
2
snh), by virtue of the

additivity of area (see (c) and (d) of page 31 ). We rewrite it as

area of Pn =
1

2
(nsn)h

But nsn is the perimeter of Pn because the boundary of Pn consists of n equal

sides (AB being one of them). So as n increases to infinity, nsn becomes in the
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limit the length of C(r), by the definition just given. Moreover, as n increases to

infinity, AB gets smaller and smaller and therefore closer and closer to the circle

C(r). Consequently the perpendicular from O to AB becomes OA in the limit and

therefore h becomes the radius of C(r), which is r. Needless to say, the area of Pn

becomes the area of D(r), by the above definition. Letting n increase to infinity, the

preceding equation then becomes

area of D(r) =
1

2
(length of C(r)) · r,

which is the same as equation ( 9 ).

Next, we tackle equation ( 10 ).

The heart of the matter in this case is the following fact about triangles: If B′ and

C ′ are points on the rays AB and AC of 4ABC so that, for some positive number

r, we have |AB′| = r|AB| and |AC ′| = r|AC|, then:

area of 4AB′C ′ = r2 · area of 4ABC (13)

�
�
�
�
�
�
�
�

@
@
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@
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@
@

B′ C ′

A

B C

Note this feature of equation ( 13 ): nothing is said about the third sides BC and

B′C ′. (It will turn out that also |BC ′| = r|BC|, but that would belong in a high

school course in geometry.)

Without some facts from similar triangles, we cannot give a complete explanation

of equation ( 13 ). However, we will provide at least the proof of a special case, and

will try to make this equation appear entirely reasonable by suggesting two hands-on

experiments. The special case in question is that of a right triangle 4ABC so that

∠A is a right angle. For the sake of definiteness, we assume r > 1. Let B′ and C ′ be

points on the rays AB and AC, respectively, of 4ABC so that |AB′| = r|AB| and

|AC ′| = r|AC| (shown here for the case r > 1):
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We now prove equation (13 ) for this case as follows. By equation ( 5 ), we have

area of 4AB′C ′ =
1

2
|AB′| · |AC ′|

=
1

2
r |AB| · r |AC|

=
1

2
r2 |AB| · |AC|

= r2 · area of 4ABC,

as desired.

Next we give an intuitive argument for the case of r = 2 and r = 3 in equation

( 13 ) when ∠A is not a right angle. For the case of r = 2, we refer to the left picture

below.

Z

A

B C

B C

A

B C

B C
Z W

X Y

If we let Z be the midpoint of B′C ′ and join BZ, CZ, and BC, then a well-drawn

picture would show quite convincingly that 4AB′C ′ is now “paved” by four triangles

each of which is congruent to 4ABC. By (c) and (d) of page 31 , we have that the

area of 4AB′C ′ is 4 times the area of 4ABC, i.e.,

area of 4AB′C ′ = 22 · area of 4ABC.

This then gives a visual verification of equation ( 13 ) for r = 2. In the case of r = 3,

we refer to the above picture on the right. If we let X be the midpoint of BB′, Y be
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the midpoint of CC ′ and let Z and W trisect B′C ′, then again a well-drawn figure

will show that the segments BW , CZ, and XY meet at a point as shown, and that

4AB′C ′ is paved by nine triangles each of which is congruent to 4ABC. Again,

by (c) and (d) of page 31 , we have that the area of 4AB′C ′ is 9 times the area of

4ABC, i.e.,

area of 4AB′C ′ = 32 · area of 4ABC.

This gives a visual verification of equation ( 13 ) for r = 3.

The general reasoning for equation ( 13 ) will have to come from the study of sim-

ilarity in a high school course on geometry.

We now use equation ( 13 ) to verify equation ( 10 ).

B

O

A B

A

Given a circle of radius r; for convenience of drawing, let r > 1. Then with the

same center O, we draw the circles C(r) and C(1), which are the larger circle and the

smaller circle, respectively, in the picture above.

Let AB be one side of a regular n-gon Pn inscribed in C(1), and let the rays OA

and OB intersect C(r) at A′ and B′, respectively. It is then easy to believe that A′B′

is also one side of a regular n-gon P ′n inscribed in C(r). The reasoning on page 56

shows that

area of Pn = n · area of 4OAB.

Similarly, we have

area of P ′n = n · area of 4OA′B′.

But because of equation ( 13 ) and the fact that |OA′| = r = r · 1 = r · |OA|, we have

area of 4OA′B′ = r2 · area of 4OAB,
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so that we now have:

area of P ′n = n · area of 4OA′B′

= n · r2 · area of 4OAB
= r2 · (n · area of 4OAB)

= r2 · area of Pn

As n increases without bound, the area of P ′n becomes the area of D(r) by the

definition of the latter, while the area of Pn becomes the area of D(1), which is π.

Therefore, when n increases without bound, the preceding equation becomes

area of D(r) = r2 · area of D(1) = πr2,

which then shows equation ( 10 ) is correct.
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GRADE 8

Geometry 8.G

Understand congruence and similarity using physical models, transparencies,

or geometry software.

1. Verify experimentally the properties of rotations, reflections, and translations:

a. Lines are taken to lines, and line segments to line segments of the same length.

b. Angles are taken to angles of the same measure.

c. Parallel lines are taken to parallel lines.

2. Understand that a two-dimensional figure is congruent to another if the second can

be obtained from the first by a sequence of rotations, reflections, and translations; given

two congruent figures, describe a sequence that exhibits the congruence between them.

3. Describe the effect of dilations, translations, rotations, and reflections on two-

dimensional figures using coordinates.

4. Understand that a two-dimensional figure is similar to another if the second can be

obtained from the first by a sequence of rotations, reflections, translations, and dilations;

given two similar two-dimensional figures, describe a sequence that exhibits the similarity

between them.

5. Use informal arguments to establish facts about the angle sum and exterior angle

of triangles, about the angles created when parallel lines are cut by a transversal, and the

angle-angle criterion for similarity of triangles. For example, arrange three copies of the

same triangle so that the sum of the three angles appears to form a line, and give an

argument in terms of transversals why this is so.

Understand and apply the Pythagorean Theorem.

6. Explain a proof of the Pythagorean Theorem and its converse.
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7. Apply the Pythagorean Theorem to determine unknown side lengths in right trian-

gles in real-world and mathematical problems in two and three dimensions.

8. Apply the Pythagorean Theorem to find the distance between two points in a coor-

dinate system. Solve real-world and mathematical problems involving volume of cylinders,

cones, and spheres.

9. Know the formulas for the volumes of cones, cylinders, and spheres and use them

to solve real-world and mathematical problems.

Expressions and Equations 8.EE

6. Use similar triangles to explain why the slope m is the same between any two

distinct points on a non-vertical line in the coordinate plane; derive the equation y = mx

for a line through the origin and the equation y = mx + b for a line intercepting the

vertical axis at b.

u

Goals of eighth grade geometry

There are six in all, and they are intended to be achieved with an emphasis on

the intuitive geometric content through the ample use of hands-on activities:

1. An intuitive introduction of the concept of congruence using rotations, transla-

tions, and reflections, and their compositions (page 63 )

2. An intuitive introduction of the concepts of dilation and similarity (page 82 )

3. An informal argument for the angle-angle criterion (AA) of similar triangles

(page 93 )

4. Use of AA for similarity to give a correct definition of the slope of a line and

prove the Pythagorean Theorem (page 97 )
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5. An informal argument that the angle sum of a triangle is 180 degrees (page

102 )

6. Introduction of some basic volume formulas (page 103 )

Grade 8 is a pivotal grade in the development of geometry in the CCSS. It prepares

eighth graders to learn the geometry of linear equations in beginning algebra as well

as furnish them with a firm foundation for the more formal development of high school

geometry. Because the geometry of eighth grade is so inextricably tied up with high

school geometry, we suggest that the pedagogical comments on page 148 and page

152 be read together with the commentary on the eighth grade standards.

It is worth pointing out that the discussion of geometry in this grade includes also

Standard 6 from Expressions and Equations because a principal application of similar

triangles—the definition of the slope of a line—is hidden in that standard.

Because of the scarcity of materials on such an approach to geometry, the following

commentary on the standards of Grade 8 will be more detailed than those in the earlier

grades. If even more details are needed, one may consult the following (recall: these

are active links):

H. Wu, Pre-Algebra (Chapters 4–7)

H. Wu, Teaching Geometry in Grade 8 and High School

According to the Common Core Standards (to be made

available, hopefully after June 15, 2012)

1. Basic rigid motions and congruence

Overview (page 64)

Preliminary definitions of basic rigid motions (page 66)

Motions of entire geometric figures (page 72)

Assumptions on basic rigid motions (page 73)

Compositions of basic rigid motions (page 74)

The concept of congruence (page 79)
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Overview

The main new ideas in the eighth grade are the concepts of translations, reflec-

tions, rotations, and dilations in the plane. The first three—translations, reflections,

rotations—are collectively referred to as the basic rigid motions, and they will be

discussed in this section. Dilation will be explained in the next.

Before proceeding further, we note that the basic rigid motions are quite subtle

concepts whose precise definitions should be preceded by other advanced concepts,

but for grade eight,

it is the intuitive geometric content of the basic rigid motions that needs

to be emphasized.

Fortunately, the availability of abundant teaching tools makes it easy to convey this

intuitive content. In this document, we will make exclusive use of overhead projector

transparencies as an aid to the explanation of basic rigid motions. This expository

decision should be complemented by two remarks, however.

The first is to caution against the premature use of computer software for learning

about basic rigid motions. While computer software will eventually be employed for

the purpose of geometric explorations, it is strongly recommended, on the basis of

professional judgment and experience, that students begin the study of basic rigid

motions with transparencies rather than with computer software. Primitive objects

such as transparencies afford to beginners the advantage of direct control so that

unforeseen software-related subtleties do not interfere with the learning process. Let

students first be given an extended opportunity to gain the requisite geometric intu-

ition through direct, tactile experiences before they approach the computer. A second

remark is that if you believe some other manipulatives are more suitable for your own

classroom needs and you are certain that these manipulatives manage to convey the

same message, then feel free to proceed.

In the following, a basic rigid motion will mean a translation, a reflection, or

a rotation in the plane; a preliminary definition of each will be given below. In high

school, these concepts will be precisely defined. In general terms, a basic rigid motion

is a rule F that assigns to each point of the plane P another point of the plane,17

17This should remind you of the definition of a function of one variable.
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to be denoted by F (P ), and this rule will be described separately below for each of

translation, reflection, and rotation. Before doing that, we are going to introduce a

piece of terminology for the sake of clarity:

instead of saying “a basic rigid motion F assigning F (P ) to P”,

we will sometimes say: “a basic rigid motion F moves a point P to

another point F (P ).”

This terminology expresses the intuitive content of “motion” better than the original

language of a “rule of assignment”. It may be instructive at this point to give the

historical origin of the term “rigid motion”: it literally means moving the points from

one part of the plane to another “rigidly” so that the relative positions of the points

are unchanged, i.e., the distances between points remain the same in the motion. The

modern terminology for “rigid motion” is isometry. Still speaking intuitively, the

way an arbitrary “rigid motion” moves the points of the plane around may be hard

to describe precisely, but it is known that every such rigid motion can be achieved

also by a sequence of translations, rotations, and reflections. 18 Because the behav-

ior of translations, rotations, and reflections can be easily understood through the

manipulation of transparencies, the behavior of an arbitrary “rigid motion” becomes

understandable. This is why translations, rotations, and reflections are called the

basic rigid motions. We now proceed to show that the motion of each of these three

basic rigid motions is very easy to visualize.

In the following, we will describe how to move a transparency over a piece of

paper in order to demonstrate the effect of a basic rigid motions on the points in

the plane. In reading the description, please bear in mind that, in the classroom,

a face-to-face demonstration with transparency and paper is far easier

to understand than the clumsy verbal description given below. In order to

compensate for this clumsiness, we are going to provide three animations on pp. 75 ,

100 , and 142 to give an idea of such a face-to-face demonstration. Moreover, there

are digital document cameras at the time of writing (April, 2012) that are capable

of making a teacher’s demonstrations with transparencies easily visible to the whole

class or even to a large audience. Thus the potential of hands-on activities in the

18For further details, see Section 12.6 of a forthcoming volume, H. Wu, Mathematics of the Sec-
ondary School Curriculum, II.

65



learning of geometry is far from being exhausted.

Definitions of the basic rigid motions

We begin with the basic rigid motion called a reflection. Let a line L be given.

Then the reflection R across L moves all the points in the plane by “reflecting”

them across L as if L were a mirror. The line L is called the line of reflection of R.

For definiteness, let us say L is a vertical line and let us say two arbitrary points in

the plane are given. We now describe how R moves these points. Let the line L and

the dots be drawn on a piece of paper in black, as in the picture below. The black

rectangle indicates the border of the paper.

Note that we are using a finite rectangle to represent the plane which is infinite

in all directions, and a finite segment to represent a line which is infinite in both

directions. With this understood, trace the line and the points exactly on a trans-

parency (of exactly the same size as the paper, of course) using a different color,

say red. Keeping the paper fixed, now flip the transparency across the vertical line

(interchanging left and right) while keeping every point on the red vertical line on

top of the same point on the black vertical line. The position of the red figure of two

dots and the red line on the transparency now represents how the original figure has

been reflected. (The red rectangle indicates the border of the transparency.)
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One should be aware of how the reflected figure compares with the original, so

we draw them together below. Since the black figure represents where the red figure

used to be, and is therefore just background information, we have drawn the black

rectangular border and the black vertical line in dashed lines to emphasize this fact.

We now look at the rule of assignment of the reflection R which moves the points

in the plane represented by the black dots to the corresponding points in the plane

represented by the red dots.

Of course every point on the vertical line remains unmoved. In partial symbolic

notation, we have:

R(upper black dot) = upper red dot, R(lower black dot) = lower red dot
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It goes without saying that R moves every point in the plane not lying on L to the

“opposite side” of L, and the two points above are meant to merely suggest what

happens in general. A key observation is that, if we take two points A and B in the

plane and

if R moves the points A and B to R(A) and R(B), respectively, then the

distance between A and B is equal to the distance between R(A) and R(B).

This is because the red dots are the exact replicas (on the transparency) of the black

dots on the paper, and so the distance between the red dots is exactly the same as that

between the black dots. We refer to this property of R as the distance-preserving

property.

Next, we define the basic rigid motion of a translation along a given vector
−→v . A vector is a segment in the plane together with the designation of one of its two

endpoints as a starting point; the other endpoint will be referred to simply as the

endpoint. Pictorially, the arrowhead on the endpoint of a vector will distinguish it

from the starting point. Let us continue with the same picture of a vertical line with

two dots on a piece of paper, and we keep the paper fixed, as before. We are going

to define the translation T along a given blue vector, to be called −→v , as shown.

−→v

We copy the vertical line, the two dots, and the vector on a transparency in red; in

particular, the copy of −→v on the transparency will be referred to as the red vector.

Let the line containing the blue vector be denoted by ` (this is the slant dashed line

in the picture above). We now slide the transparency along −→v , in the sense

that we move the transparency in the direction of −→v so that the red vector on the

transparency remains in the line `, and so that the starting point of the red vector

rests on the endpoint of the blue arrow, as shown.
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The whole red figure is seen to move “in the direction of −→v and by the same distance”.

Then by definition, T moves the black dots to the red dots. Precisely, the rule of

assignment of T moves the point in the plane represented by the upper (respectively,

lower) black dot to the point in the plane represented by the upper (respectively,

lower) red dot. If we draw the translated figure by itself without reference to the

original, it is visually indistinguishable from the original:

So we put in the black figure as background information to show where the red

figure used to be. Then T moves the points represented by the black dots to the

corresponding points represented by the red dots, and moves each point in the black

vertical line to a point in the red vertical line. The dashed arrows are meant to

suggest the assignment.
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For exactly the same reason as in the case of a reflection, a translation is distance-

preserving: if A and B are any two points in the plane and if T assigns the points

T (A) and T (B) to A and B, respectively, then the distance between A and B is equal

to the distance between T (A) and T (B).

We make an observation about translations: If
−→
0 is the zero vector, i.e., the

vector with 0 length, which is a point, the translation along
−→
0 then leaves every

point unchanged. This is the identity basic rigid motion, usually denoted by I.

Thus I(P ) = P for every point P . (This is the transformation analog of the identity

function of one variable: f(x) = x for every number x.)

Finally, we define the basic rigid motion called the rotation Ro around a given

point O of a fixed degree. The point O is called the center of rotation of Ro.

The center O could be any point, but for definiteness, let it be the lower endpoint

of the vertical line segment we have been using, and let the rotation be 30 degrees

counterclockwise around this point (one could also do a clockwise rotation). Again,

we trace the vertical line segment and the two dots on a transparency in red. Then

we pin the transparency down at the center of our chosen rotation, which is the

lower endpoint of the segment and (keeping the paper fixed of course) rotate the

transparency counterclockwise 30 degrees, i.e., so that the angle between the black

segment and the red segment is 30 degrees. In the picture below, the rotated figure

is superimposed on the original figure and, as usual, the red rectangle represents the

border of the transparency. By definition, the rotation moves the upper black dot to

the upper red dot, and the lower black dot to the lower red dot.
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Observe that the angle formed by the ray from the center of rotation to a black dot

and the ray from the center of rotation to the corresponding red dot is also 30 degrees.

We now draw the rotated figure as a geometric figure in the plane. Again we

emphasize that the dotted black figure is provided only as background information;

it serves as a reminder of where the red figure used to be. The dotted arcs indicate

the rule of assignment by Ro.

A rotation is distance-preserving, for the usual reason that what is on the trans-

parency is nothing but an exact replica of what is on the paper. Note that a rotation

of 0 degrees is also the identity basic rigid motion I.
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Motions of entire geometric figures

We now introduce some terminology to facilitate the ensuing discussion. Given a

basic rigid motion F , it assigns a point F (P ) to a point P in the plane. We say F (P )

is the image of P under F , or that F maps P to F (P ).

We have given a description of how a reflection, a translation, or a rotation moves

each point. What we do next is to examine a bit how a basic rigid motion moves, not

just a point, but a whole geometric figure, in the following sense. Given a geometric

figure S in the plane, then each point P in S is mapped by F to another point F (P ).

Now focus entirely on S and observe what the total collection of all the points F (P )

looks like when P ranges over all the points of S, and only the points in S. For un-

derstandable reasons, we denote such a collection by the symbol F (S) and call it the

image of S by F . (We also say F maps S to F (S).) For example, in the preced-

ing picture of the 30 degree counterclockwise rotation Ro around the lower endpoint

of the vertical segment, let the lower endpoint be denoted by B and let S denote

this vertical segment.19 Then Ro(S) is the red segment AB, as shown. It makes a

30 degree angle with S. (Again, the red rectangle represents the border of the trans-

parency, and it is left in the picture to better convey how the plane has been rotated.)

A

P

Ro(P)

B

Now, let T be the translation along the blue vector that we encountered earlier on

page 69 , and if S continues to denote the same vertical segment, then T (S) becomes

the red segment which is now parallel to S rather than making a 30 degree angle with

19Notice that in this instance, we are taking the picture literally and regard the segment for what
it really is: a segment. By contrast, we have, up to this point, used this segment to represent the
whole vertical line.
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S at its lower endpoint. (In the picture below, the fact that the upper horizontal

dashed line passes through the lower red dot is entirely accidental.)

P

T(P)

We see that by looking at the image of a segment, we obtain at a glance a fairly

comprehensive understanding of the basic difference between a rotation and a transla-

tion, something that is not possible if we just look at the cut-and-dried descriptions of

how these basic rigid motions move the points, one point at a time. Students should

be exposed to many such hands-on activities to get a better feel for the “image of a

figure”.

We observe that rotation maps lines, rays, and segments to lines, rays, and seg-

ments, and are distance- and degree-preserving for the reason that each such image

is nothing but an exact replica (on the transparency) of the corresponding geometric

figure on the paper.

Assumptions on basic rigid motions

Let us summarize our findings thus far. Hands-on experiences, such as those above,

predispose us to accept as true that the basic rigid motions (reflections, translations,

and rotations) share three common “rigidity” properties:

1. They map lines to lines, rays to rays, and segments to segments.

2. They are distance-preserving, meaning that the distance between the images of

two points is always equal to the distance between the original two points.
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3. They are degree-preserving, meaning that the degree of the image of an angle is

always equal to the degree of the original angle.

Notice that property 1 implies that a basic rigid motion maps rays to rays, and since

angles are two rays with a common vertex (see page 7 ), a basic rigid motion also

maps angles to angles. This is why in property 3 we can speak about “the degree of

the image of an angle” because this image is an angle.

The three properties above are believable, so why not just declare that these are

the starting points of our reasoning? In other words, on the basis of these properties,

what else can we say about geometric figures using logical reasoning? This will in

fact be our official position. In the ordinary parlance of mathematics, properties 1, 2,

3 above will be our assumptions about basic rigid motions, i.e., we will henceforth

agree that every basic rigid motion has these properties, and will use these properties

to make logical deductions about geometric figures.

For now, will also accept as part of our assumptions that there are “plenty” of

basic rigid motions, in the following sense:

R Given any line, there is a reflection across that line.

T Given any vector, there is a translation along that vector.

Ro Given a point and a degree, there is a rotation (clockwise or counterclockwise) of

that degree around the point.

In the high school course where we will have to make explicit other assumptions, we

will see that, in fact, R, T, and Ro can be proved and there will be no need to accept

them as an article of faith (see Lemmas 2–4 on page 136 ).

Compositions of rigid motions

Having explained the meaning of the basic rigid motions, it is time to go to the next

level and explain the concept of the composition of basic rigid motions, which

means moving the points of the plane by use of two or more basic rigid motions in

succession, one after another. The need for composition is easily seen by considering

an example. Suppose the following two identical H’s are paced in the plane as shown.

Is there a single basic rigid motion so that it maps one of these H’s to the other?
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Because there is no obvious such rigid motion to get the job done,20 we do the next

best thing by devising a sequence of basic rigid motions to accomplish the same thing.

Before describing this sequence of basic rigid motions, I want to point out that Larry

Francis has created an animation for this purpose:

http://www.youtube.com/watch?v=O2XPy3ZLU7Y&feature=youtu.be

I think it would be profitable to watch this animation and also read the following

description; they complement each other.

We begin by mapping the lower right corner of the left vertical H to the upper

left corner of the right horizontal H because those two points are “well-matched”

intuitively. Once we have done that, then we can better think of what to do next. So

we translate the plane along the blue vector, as shown:

Now we trace the left vertical H onto a transparency in red, and then we slide the

transparency along the blue vector (see page 68 for the definition of slide). Then the

vertical (black) H on the left is moved to the position indicated by the red figure of

the transparency as indicated below:

20In fact it is impossible to use one basic rigid motion to map either H onto the other.
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Note that the translation along the blue vector also moves the horizontal black H

to a higher position (not shown here), but for our purpose, there is no need to keep

track of where this horizontal black H goes because we are only interested at this

point in the new position of the vertical black H. However, we put the black dashed

H’s in the picture above in order to remind ourselves where the original figure (of the

two H’s) used to be. In particular, they remind us that our goal is to further move

the vertical red H to where the dashed horizontal H is.

We have to move the plane (i.e., the transparency) again by using basic rigid

motions until the red vertical H on the transparency21 coincides with the black dashed

horizontal H. If we rotate the plane (i.e., the transparency) around the red dot (i.e.,

the endpoint of the blue vector) 90 degrees clockwise, the red figure will assume the

following position:

Figure 2

Let us be clear about what the red figure means: this is the position of the

21Or, more correctly, all the points of the plane in the area at present occupied by the red vertical
H.

76



(original) black vertical H moved first by the translation along the blue vector, and

then followed by the clockwise rotation of 90 degrees around the red dot. Specifically,

under the consecutive actions of these two rigid motions, the vertical black H has

been moved to the position of the horizontal red H in Figure 2 above (the horizontal

black H has also been moved, but we are not concerned with that). At this point, it

is clear that our goal will be achieved if can move the horizontal red H in Figure 2 to

the dashed horizontal black H of Figure 2). This can be done by reflecting the plane

across the horizontal line that passes through the red dot (this line is not drawn in

Figure 2). We proceed to realize this reflection by flipping the transparency across

the horizontal line containing the red dot, interchanging the part of the plane (i.e.,

the transparency) above the line and the part below it (while keeping every point of

the horizontal line fixed). When we do that, the new position of the red figure is the

following:

Thus the horizontal red H is now exactly where the horizontal black H used to be.

By applying three basic rigid motions in succession, we finally achieve our goal.

To summarize: In order to move the left vertical H of the following picture to

coincide with the right horizontal H, we apply three basic rigid motions in succession:

(1) We first translate along the blue vector (whose endpoint we call P ), then (2) follow

the translation by a 90 degree clockwise rotation around P , and then (3) follow the

rotation by a reflection across the horizontal line that contains P .

P
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We now give a formal definition of composition. Let F and G be two basic rigid

motions. Then the composition F ◦ G, or G composed with F 22 is defined to

be the rule that assigns to a given point P the point F (G(P )). In symbols:

(F ◦G)(P )
def
= F (G(P ))

Let us make sure that this definition makes sense. First of all, G moves P to the

point G(P ) of the plane, so it makes sense for the rigid motion F to move the given

point G(P ) to the point F (G(P ) ). Thus the rule that assigns the point F (G(P ))

to the point P does make sense. Moreover, to find out which point F ◦G assigns to

a given point P , first we obtain G(P ) and then we focus on what F does to G(P ).

In terms of transparencies, this observation corresponds to our insistence that, once

we have moved the transparency according to the first basic rigid motion G, we are

no longer concerned with the effect that the second rigid motion has on the points in

their original positions in the plane (i.e., on the paper) itself, but only on the points

in their displaced position as a result of G (i.e., the points on the transparency).

Notice that F ◦ G so defined also satisfies properties 1–3 on page 73 shared by

the basic rigid motions. Indeed, consider property 1. If we think back on our use

of transparencies to define basic rigid motions, then it is clear that the image of a

figure under F ◦ G is just a relocation of the same figure on the transparency to a

different part of the plane, and therefore if the figure is a line, or a ray, or a segment,

the image remains a line, or a ray, or a segment. For the same reason, distances and

degrees are preserved by F ◦ G. The conclusion: the composition F ◦ G enjoys the

same properties 1–3 on page 73 shared by the basic rigid motions.

One way to familiarize students with the concept of composition of basic rigid

motions is to use rigid motions to map geometric figures drawn in a coordinate system.

For example, consider the following triangle in the coordinate plane;

22G comes before F , as the following definition makes clear. It is unfortunate that the writing of
F ◦G gives the opposite impression when read from left to right.
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Suppose R is the reflection across the slant line (the “diagonal”) that makes a 45◦

angle with the positive x-axis and T is the translation along the vector shown in red,

what is the image of the triangle by the composition T ◦R?

The concept of congruence

A main reason for introducing the concept of the composition of basic rigid motions

is that we need it to define congruence. In general, we say two geometric figures are

congruent if a composition of a finite number of basic rigid motions maps one figure

onto the other. We also call the composition of a finite number of basic rigid motions

a congruence. From the definition, we see that a composition of congruences is also

a congruence.

Because the concept of congruence has been treated in a cavalier manner in K–12

for so long (“same size, same shape”), we call attention to the fact that once we have

this precise definition, we are duty-bound to use only this meaning of congruence

in all subsequent mathematical discussion. For example, we can no longer claim

that two geometric figures are congruent just because they seem to have the same

size and same shape, but must now produce a composition of basic rigid motions

that moves one figure to the other. As another example, this precise definition of

congruence sheds new light on the all-too-familiar criterion of (for example) ASA

for triangle congruence. In order to claim that ASA is true, we must now exhibit

a composition of basic rigid motions that moves one triangle to another when they

satisfy the requisite conditions (see below). This is what we are going to do. We first

recall the three classical criteria for congruence.

SAS criterion for congruence. If two triangles have a pair of equal
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angles (i.e., same degree) and corresponding sides of these angles in the

triangles are pairwise equal, then the two triangles are congruent.

ASA criterion for congruence. If two triangles have two pairs of equal

angles and the common side of the angles in one triangle is equal to the

corresponding side in the other triangle, then the triangles are congruent.

SSS criterion for congruence. If two triangles have three pairs of

equal sides, then they are congruent.

At this stage, it suffices for students to verify these theorems experimentally by draw-

ing pictures or by use of a geometric software. However, if more details are needed,

we now offer an informal proof of ASA; “informal” means that, while the overall idea

is correct, some details are glossed over. But please keep in mind that when the

following proof is given in class by moving (plastic, cardboard, or wooden) models of

triangles on the blackboard, it is much more understandable than the purely verbal

explanation given here.

Let us begin the informal proof. Thus we have two triangles ABC and A0B0C0

so that |∠A| = |∠A0|, |AB| = |A0B0|, and |∠B| = |∠B0|. We have to produce a

congruence (see page 79 ) F so that F (4ABC) = 4A0B0C0, where the notation

means:

F (A) = A0, F (B) = B0, F (C) = C0.

In greater detail, we have to produce a composition of basic rigid motions that maps

4ABC exactly on 4A0B0C0, vertex by vertex.
B

C

A

A

C

B

0

0 0

Step 1: Bring vertices A and A0 together. If A = A0 already, do nothing. If not,

let T be the translation along the vector
−−→
AA0 (the vector consisting of the segment

joining A to A0, with A as the starting point and with A0 as the endpoint) . Then
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T (4ABC) is a triangle with one vertex in common with 4A0B0C0.

A

C

B

A B

C0

0 0

T(B)

T(C)

T(A)=

To realize this by use of a transparency, we trace out 4ABC in red and then slide

4ABC along the vector
−−→
AA0. We can show two of the positions of 4ABC (in red)

in its transition from A to A0; the upper blue arrow in each picture indicates how

much further the red triangle has yet to go. In the background, we draw the original

positions of 4ABC and 4A0B0C0 in dashed lines as a reminder of where things used

to be.

A B

C

A

C

B

0

0 0 A B

C

A

C

B

0

0 0

Step 2: Bring the sides AB and A0B0 together. If the translated segment T (AB)

of AB already coincides with A0B0, do nothing. Otherwise, since A = A0, a rotation

Ro of a suitable degree around A0 would bring the ray from A0 to T (B) to coincide

with the ray from A0 to B0. Then because of the assumption that |AB| = |A0B0|,
the same rotation would bring T (B) to B0.
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B

C

A

C

B

A

0

0 0

Ro(T(C))

Step 3: Bring vertices C and C0 together. If the point Ro(T (C)) and the point

C0 are on opposite sides of the line joining A0 to B0, then the reflection R across

this line would bring the point Ro(T (C)) to the same side of C0. We may therefore

assume that, after (possibly) a translation and a rotation and a reflection, the point

C is brought to a point C ′ which lies on the same side as the point C0 with respect

to the line joining A0 to B0. See the following picture.

A

B

C

A

C

B
0 0

0

Ro(T(C))

Now, we claim that, appearance to the contrary (as in the above picture), the ray

from A0 to C ′ must coincide with the ray from A0 to C0. This is because the basic

rigid motions preserve degrees of angles (see page 73 ) and therefore ∠C ′A0B0 is equal

to ∠A, which is assumed to be equal to ∠C0A0B0. Thus |∠C ′A0B0| = |∠C0A0B0|,
and since C ′ and C0 are on the same side of the line joining A0 to B0, the two sides

A0C0 and A0C
′ coincide as rays. Similarly, the ray from B0 to C0 coincides with the

ray from B0 to C ′. But C ′ is the intersection of the ray from A0 to C ′ and the ray

from B0 to C ′, while C0 is the intersection of the ray from A0 to C0 and the ray from

A0 to C0. Thus C ′ = C0, which means after (possibly) a translation and a rotation

and a reflection, A, B, and C are brought respectively to A0, B0, and C0. We have

proved the ASA criterion.

2. Dilation and similarity

Dilations and the Fundamental Theorem of Similarity (page 83)
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Basic properties of dilations (page 85)

The dilated image of a figure (page 89)

Similarity (page 91)

Dilations and the Fundamental Theorem of Similarity

So far we have dealt with rules of assignment in the plane that move points in

a distance-preserving manner (see page 73 for the definition). Now we will confront

an important class of such rules that definitely are not distance-preserving. Consider

this question: Given a wiggly curve such as the following, how can we “double its

size”? (Note: Please do not be misled by the imperfection of the graphics; this wiggly

curve has no width.)

One of the purposes of this section is to show how this can be done and, in the

process, clarify what it means to “double the size” of a geometric figure. The basic

idea of getting this done turns out to be the astonishingly simple one of fixing an ar-

bitrary point O in the plane and then pushing every point in the plane away from O

by doubling its distance from O. Once this idea takes root, it becomes clear that not

only “doubling the size”, but also “halving the size” can be achieved by a variation

on this theme. This is the concept of a dilation, and we formulate it as follows.

Definition. A dilation D with center O and scale factor r (r > 0) is a

rule that assigns to each point P of the plane a point D(P ) so that

(1) D(O) = O.

(2) If P 6= O, the point D(P ), to be denoted more simply by P ′, is the

point on the ray ROP so that |OP ′| = r|OP |.

q q q︸ ︷︷ ︸
r |OP |

O P P ′
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Intuitively, if r > 1, the dilation pushes every point of the plane away from the center

O by “proportionally the same amount”, and if r < 1, then it pulls every point toward

the center O also by “proportionally the same amount”.

There are two things of note about this definition. One is that unless the scale

factor r is equal to 1, a dilation is not a congruence. The easiest way to see this is to

consider a simple situation where the scale factor r of the dilation D is (let us say)

2.5 and the center O is the origin of a coordinate system. Let the ray from O be the

positive x-axis and let two points P and Q be the numbers 2 and 3, respectively.

q q qq qO P Q
2 3 5 7.5

P ′ Q′

Then |PQ| = 3 − 2 = 1. Then if P ′ = D(P ) and Q′ = D(Q), we have |OP ′| =

r |OP | = 2.5 × 2 = 5 and |OQ′| = r |OQ| = 2.5 × 3 = 7.5. It follows that P ′ = 5

and Q′ = 7.5 and |P ′Q′| = 7.5− 5 = 2.5. In particular, |P ′Q′| = 2.5 · |PQ| > |PQ|
and D is not distance-preserving (see page 73 ).

The same reasoning shows that, for any dilation D with center O and scale factor

r, the equality |D(P )D(Q)| = r |PQ| holds for any two points P and Q on a ray

issuing from O. Therefore unless r = 1, D cannot be a congruence.

A second thing to note about the preceding definition of dilation is that the point

P ′ in condition (2) is chosen from the ray ROP and not the line LOP . Thus the point P

and its image P ′ under D are always on the same side of the center O on the line LOP .

Now suppose points P and Q are on a line passing through the center O but do

not lie on the same ray. Does the equality |P ′Q′| = r |PQ| continue to hold? The

answer is affirmative and the computation is quite similar.

qrq q q qP O Q Q′P ′

However, if line LPQ does not contain O, then the fact that |P ′Q′| = r |PQ| continues

to hold is much more subtle and this is the content of the following Fundamental

Theorem of Similarity, usually abbreviated to FTS. In the statement of the theo-

rem, we adopt a common abuse of notation: Let LPQ (respectively, LP ′Q′) denote the
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line joining P and Q (respectively, P ′ and Q′). Then instead of saying LP ′Q′ ‖ LPQ,

we usually write:

P ′Q′ ‖ PQ

Theorem (FTS). Let D be a dilation with center O and scale factor r > 0. Let P

and Q be two points so that LPQ does not contain O. If D(P ) = P ′ and D(Q) = Q′,

then

P ′Q′ ‖ PQ and |P ′Q′| = r |PQ|
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The case r > 1
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P Q

O

P ′ Q′

The case r < 1

Eighth grade is not a suitable place to prove this theorem; a high school course

will be better able to handle such a proof, or at least a part of it. What one can

do in an eighth grade class is to verify simple cases of FTS by direct measurements

to gain confidence in its validity. For example, one can start with r = 2, 3, 4, and

then verify that (within the bounds of measurement errors), indeed, |P ′Q′| = 2|PQ|,
|P ′Q′| = 3|PQ|, |P ′Q′| = 4|PQ|, respectively, and PQ ‖ P ′Q′ each time. Then do

the same with r = 1
2 , r = 2

3 , r = 3
4 , etc.

However, the importance of FTS to eighth grade geometry is not so much to learn

to prove it but learn to use it. We often come across such a situation in school mathe-

matics, namely, using a powerful tool without proof, because the proofs of such tools

can be given without circular reasoning.23 We will use FTS to deduce the most basic

properties of a dilation.

Basic properties of dilations

23Briefly, this means that the reasoning used in affirming the validity of these tools is logically
independent of the application we have in mind for these tools.
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There are four of them. Their proofs can be found in a high school course, but in

line with the curricular goal of eighth grade geometry, we will only give an informal

proof for the last one.

First of all, notice that insofar as a dilation is a rule of assignment in the plane,

we will simply take over the terminology associated with basic rigid notions such as

maps, image, composition, etc. We will also fix the notation as in FTS, i.e., we have

a dilation D with center at O and scale factor r. Then the discussion leading up to

FTS about |P ′Q′| may now be summarized as follows:

(i) Let D be a dilation with scale factor r. Then the distance between the

images P ′ = D(P ), Q′ = D(Q) of any two points P and Q is always r

times the distance between P and Q, i.e.,

|P ′Q′| = r |PQ|.

We usually paraphrase (i) by saying that a dilation with scale factor r changes distance

by a scale factor of r. Here is an example where r = 2:

�
�
�
�
�
�
�
�

D
D
D
D
D
D
D
DD

P ′ Q′

O

P Q

A second property is this:

(ii) A dilation maps lines to lines, rays to rays, and segments to segments.

The main point here is the assertion about lines. Again, for grade eight, it suffices

to verify this assertion in special cases by picture drawing. Once that we know a

dilation D maps a line PQ to the line P ′Q′, where P ′, Q′ are the images of P , Q

under D, FTS now implies:

(iii) A dilation maps a line not containing the center of dilation to a

parallel line.

A fourth basic property of dilation is the following.
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(iv) A dilation preserves degrees of angles.

We note first of all that (iv) makes sense because by (ii) above, a dilation maps rays

to rays and therefore angles to angles. So it makes sense to ask for the degree of the

image angle by a dilation. For eighth grade students, the following informal argument

for (iv) will be enough and a rigorous proof can be postponed to a high school course.

We begin with a fact about parallel lines. Let L1 and L2 be two distinct lines and

let ` be a transversal of L1 and L2 in the sense that ` intersects both. Suppose `

meets L1 and L2 at P1 and P2, respectively. Then the angles ∠SP2R2 and ∠P2P1Q1

in the picture below, with vertices at P1 and P2 and lying on the same side of the

line `, are called a pair of corresponding angles of the transversal ` with respect to

L1 and L2. Replacing one of them by its opposite angle (or vertical angle) such

as ∠P1P2Q2, then ∠P1P2Q2 and ∠P2P1Q1 are called alternate interior angles of `

with respect to L1 and L2. Similarly, ∠R2P2P1 and ∠Q1P1T are also corresponding

angles of ` with respect to L1 and L2.

((((
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((((
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E
EE

L1

L2

`

Q2

P1

P2

R2

S

Q1

s

s
T

Then we have the following theorem.

Theorem 1. (a) Corresponding angles of a transversal with respect to parallel lines

are equal, and conversely, if a pair of corresponding angles of a transversal with respect

to two lines are equal, then the two lines are parallel. (b) Alternate interior angles

of a transversal with respect to parallel lines are equal, and conversely, if a pair of

alternate interior angles of a transversal with respect to two lines are equal, then the

two lines are parallel.
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Since opposite angles are (easily seen to be) equal, it suffices to prove part (a).

We suggest that eighth graders simply verify special cases of this theorem by direct

measurements. In fact, it would be very instructive to teach them how to use the

converse statement of part (a) to draw a line parallel to a given line and passing

through a given point with the help of a ruler and a plastic triangle.

We can now return to the original problem which inspired this detour into par-

allelism: How to prove that a dilation preserves degrees of angles (page 87 ). Let D

be a dilation (with some center O) and let ∠PQR be given. Let D(QP ) = Q′P ′ and

without loss of generality, we may assume R is the intersection of LQR and LQ′P ′ . Let

D(QR) = Q′R′, so that D(∠PQR) = ∠P ′Q′R′.

We have to prove that

|∠PQR| = |∠P ′Q′R′|.
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Let the angle formed by LQ′P ′ and LQR at R, as indicated in the picture, be denoted

by ∠s. Since D(QR) = Q′R′, (iii) implies that QR ‖ Q′R′ (page 86 ), so that, by

Theorem 1(a),

|∠P ′Q′R′| = |∠s|

Since also D(QP ) = Q′P ′ by assumption, Theorem 1(a) implies that

|∠s| = |∠PQR|
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Hence |∠PQR| = |∠P ′Q′R′|, as desired.

We have just given the essential idea of why a dilation preserves degrees of angles.

The dilated image of a figure

Property (iii) of a dilation makes it very easy to draw the dilated image of a

rectilinear geometric figure, i.e., one that is the union of segments (in the sense of

the collection of all the segments). Consider a segment PQ and a dilation D, then

the image D(PQ) by D is simply the segment P ′Q′, where P ′, Q′ are the images of

P and Q by D, respectively. This is because (iii) says the image D(PQ) is a segment

joining D(P ) = P ′ and D(Q) = Q′, and since P ′Q′ is also a segment joining P ′ and

Q′, we must have D(PQ) = P ′Q′ (there is only one line joining two distinct points).

For example, if we have to get the dilated image of a given quadrilateral ABCD

with a scale factor of 2.1, we take a point O as the center of dilation, draw rays from O

to the vertices. On each of these rays, say the ray from O to A, mark down A′ so that

|OA′| = (2.1) · |OA|. Do likewise to the other rays. We thus obtain a quadrilateral

A′B′C ′D′. By assertion (iii), D(ABCD) = A′B′C ′D′.
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This D(ABCD) is by definition the magnification of ABCD to 2.1 times its

size. So for rectilinear figures, how to magnify them is straightforward.

Notice that, in an intuitive sense, ABCD and D(ABCD) do “look alike”, i.e.,

they have “the same shape”.

We can now return to the curve at the beginning of this section:
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How to “double its size”? We choose an arbitrary point O outside the curve as the

center of a dilation and dilate the curve with a scale factor of 2. Now by definition,

dilating the curve means dilating it point by point, and since the curve contains an

infinite number of points, we have to compromise for the sake of drawing by dilating

only a finite number of points on the curve. We start simply: take a point P on the

curve and on the ray OP , we mark off a point P ′ so that |OP ′| = 2|OP |. Now repeat

this for a small number of such P ’s and get something like the following. The contour

of a curve that is bigger than, but “looks like” the original is unmistakable.

P

P
O

Now if we choose, let us say 1500 points on the original curve,24 and dilate them

one-by-one, we get the usual curve that appears on the computer screen. We have

omitted the radial lines but retained the center of the dilation; on a normal computer

screen, of course even the center is omitted.

O

24This is an estimate of how many points the graphing software uses.
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Given a curve S, if there is a dilation D with scale factor r (and some center) so

that D(S) = S ′, then we say the curve S ′ is a magnification with a scale factor

r of the curve S. (For lack of a better term, we let the word “magnification” be

used even when r < 1.) In this sense, the above dilated image of the original curve is

“double the size” of the original, and our problem is solved.

Of course, you may be puzzled by this new meaning of “magnification”. After

all, don’t we recognize whether something is a “magnification” of a given figure or

not, and whether or not they have the same shape? Perhaps, but in mathematics,

what is needed ultimately is not some vague feelings that any particular individual

happens to possess, but a precise articulation of the properties or qualities that we

try to express in a way that leaves no room for misunderstanding. From this point of

view, the preceding definition of “double the size” (i.e., magnification with scale factor

2) is sufficiently precise to be usable. Furthermore, this definition of “double the size”

would not be acceptable if the image curve under the dilation fails to have “the same

shape” as the original curve or fails to look “twice as big”, but the image curve passes

this common-sense test with flying colors as well. (In a school classroom, be sure to

let students draw many magnifications with various scale factors of different curved

figures so as to give them confidence in this definition of “magnification”.) So this is

the definition we shall abide by in our mathematical work related to “magnification”.

Incidentally, what we have described here is the underlying principle of magnification

in digital photography; this is how an image is enlarged or reduced in size in the

digital world.

In a classroom, getting students to do the magnification of a curvy figure by di-

lation (with a reasonable number of points chosen and strategically placed on the

original figure), and with different scale factors, would be a very worthwhile learning

experience. It would reinforce their confidence in, and their understanding of the

definition of dilation, and it is also a “fun” activity because it is not at all obvious

how a figure can be enlarged or reduced in size.

Similarity

We have seen that the dilated image of a figure “has the same shape” as the

original, so a geometric figure would most certainly “have the same shape” as its
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image under any dilation. But does this suggest that we can simply define two

geometric figures to be “similar” if one is the dilation of the other? The answer is

unfortunately no. Consider, for example, the dilated image of a triangle ABC to a

triangle A0BC0 by a dilation D centered at B as shown, with a scale factor r < 1.

Of course these two triangles “have the same shape”. Now let a congruence F move

4A0BC0 to 4A′B′C ′, as shown (more precisely, F is the composition of a 90 degree

clockwise rotation around B0 followed by a translation).

A

A

A C

C B

B

0 C0

Because 4A0BC0 and 4A′B′C ′ “have the same size and the same shape”, we have

to agree that 4ABC and 4A′B′C ′ also have the same shape. Yet there is no dilation

D′ that maps 4ABC to 4A′B′C ′ because if there were, we’d have

D(A) = A′ and D(C) = C ′

so that by property (iii) of a dilation (page 86 ), we would have AC ‖ A′C ′, which

is not the case. Therefore similarity between geometric figures cannot be limited to

those so that one is obtained from the other by a dilation. At the same time, the

preceding example also suggests how to define similarity correctly: we should include

the composition with a congruence in the definition.

We therefore define a figure S in the plane to be similar to another figure S ′ if

there is a dilation D and a congruence F so that (F ◦ D)(S) = S ′. According to

this definition, we now see that 4ABC is similar to 4A′B′C ′ because if D is the

dilation that maps 4ABC to 4A0BC0 and F is the congruence that maps 4A0BC0
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to 4A′B′C ′, then

(F ◦D)(4ABC) = F (D(4ABC)) (definition of composition, page 78 )

= F (4A0BC0) (D maps 4ABC exactly to 4A0BC0)

= 4A′B′C ′ (F maps 4A0BC0 exactly to 4A′B′C ′)

Thus the dilation D followed by the congruence F bring 4ABC to 4A′B′C ′.
According to this definition, it is also the case that if a dilation D maps a figure

S to another figure S ′, then S is similar to S ′ because we can let the congruence F

be the identity basic rigid motion I (page 70 ) so that (I ◦D)(S) = S ′. Likewise, if a

figure S is congruent to another figure S ′, then S is similar to S ′ because we can let

the dilation be the identity dilation (scale factor 1).

The composition F ◦ D of a dilation followed by a congruence is called a sim-

ilarity. The scale factor of the dilation D is then called the scale factor of the

similarity F ◦D.

We conclude this section by bringing closure to the discussion of scale drawings

started in grade 7 (page 49 ). If there are two geometric figures in the plane, S and

S ′, then by definition, S ′ is said to be a scale drawing of S with scale factor r if

there is a similarity F ◦D with scale factor r so that (F ◦D)(S) = S ′.
To see how this definition of scale drawing is related to the discussion on page

49, notice first of all that a one-to-one correspondence is a transformation and that

a composition of one-to-one correspondences remains a one-to-one correspondence

(this is a straightforward exercise). Now a dilation is necessarily a one-to-one corre-

spondence of the plane with itself, as is any congruence. Thus a similarity, being a

composition of a dilation and a congruence, is also a one-to-one correspondence. Fur-

thermore, property (i) on page 86 shows that a similarity satisfies the proportionality

relationship given at the bottom of page 50. Thus the concept of similarity is nothing

but a precise formulation of the concept of scale drawing.

3. The angle-angle criterion (AA) for similarity

Let 4ABC be similar to 4A′B′C ′.
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Thus there is a dilation D and a congruence F so that (F ◦D)(4ABC) = 4A′B′C ′. It

is convenient to denote the similarity F ◦D by a single letter, say H = F ◦D. (We use

H in this document, but it may be better in a school classroom to continue using F ◦D
to remind students that a similarity is a composition of a dilation and a congruence.)

Recalling the convention regarding the notation of congruent triangles, we explicitly

point out that the notation H(4ABC) = 4A′B′C ′ carries the convention that

H(A) = A′, H(B) = B′, and H(C) = C ′

Let the scale factor of the dilation D be r, and let

D(A) = A∗, D(B) = B∗, and D(C) = C∗

By properties (i) and (iv) of dilations (pages 86 ), we get

|∠A| = |∠A∗|, |∠B| = |∠B∗|, |∠C| = |∠C∗|

and
|AB|
|A∗B∗|

=
|BC|
|B∗C∗|

=
|AC|
|A∗C∗|

(= r)

Now F is a congruence which preserves lengths and degrees. Therefore all this infor-

mation about4A∗B∗C∗ will be transferred to4A′B′C ′ and we arrive at the following

theorem.

Theorem 2. Let 4ABC be similar to 4A′B′C ′. Then

|∠A| = |∠A′|, |∠B| = |∠B′|, |∠C| = |∠C ′|

and
|AB|
|A′B′|

=
|BC|
|B′C ′|

=
|AC|
|A′C ′|
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It is worth remarking that whereas the content of this theorem is usually taken

to be the definition of similar triangles, for us this theorem is a confirmation of the

fact that two triangles with “the same shape” (equal angles and proportional sides)

are indeed similar in a precise sense.

The converse of Theorem 2 is also true. However, as in the case of congruence

(page 79 ), much more is true. The following are the counterparts in similarity of the

SAS, ASA and SSS criteria for congruence, respectively.

SAS criterion for similarity. Given two triangles ABC and A′B′C ′,

suppose

|∠A| = |∠A′| and
|AB|
|A′B′|

=
|AC|
|A′C ′|

.

Then the triangles are similar.

AA criterion for similarity. Given two triangles ABC and A′B′C ′,

suppose two pairs of corresponding angles are equal. Then the triangles

are similar.

SSS criterion for similarity. Given two triangles ABC and A′B′C ′,

suppose the ratios of the (lengths) of three pairs of corresponding sides

are equal. Then the triangles are similar.

The proofs of these theorems are more suitable for a high school course than an

eighth grade class, but we are going to give a proof of the AA criterion because it is

so central to the discussion of the slope of a line. The proof is based on FTS.

Proof of the AA criterion for similarity. Suppose we are given triangles ABC

and A′B′C ′ such that |∠A| = |∠A′| and |∠B| = |∠B′|. We have to show that the

triangles are similar.
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If |AB| = |A′B′|, then triangles ABC and A′B′C ′ are congruent because of the

ASA criterion for congruence (pages 80 and 80 ); there would be nothing to prove.

Thus we may assume that the sides AB and A′B′ have different lengths: either

|A′B′| < |AB| or |A′B′| > |AB|. Since the proofs for these cases are entirely similar,

we take up the former for definiteness. Thus we assume |A′B′| < |AB|. On the

segment AB, let B∗ be the point so that |AB∗| = |A′B′|. Also let r = |A′B′|/|AB| (=
|AB∗|/|AB|). Denote the dilation with center A and scale factor r by D, and let C∗

be the point in the segment AC so that C∗ = D(C). By FTS (page 85 ), B∗C∗ ‖ BC
and therefore |∠AB∗C∗| = |∠B|, by Theorem 1 (page 87 ). But by hypothesis,

|∠B| = |∠B′|, so

|∠AB∗C∗| = |∠B′| .

Since |∠A| = |∠A′| by hypothesis, triangles AB∗C∗ and A′B′C ′ now satisfy the condi-

tions of ASA and are congruent. Hence there is a congruence F so that F (4AB∗C∗) =

4A′B′C ′. But by the definition of D, we already have D(4ABC) = 4AB∗C∗.
Thus we now see that the similarity transformation, which consists of the dilation

D bringing 4ABC to 4AB∗C∗ followed by the congruence F bringing 4AB∗C∗

to 4A′B′C ′ , maps 4ABC exactly to 4A′B′C ′ . In symbols, (F ◦ D)(4ABC) =

4A′B′C ′ because

(F ◦D)(4ABC) = F (D(4ABC)) = F (4AB∗C∗) = 4A′B′C ′.

The two triangles ABC and A′B′C ′ are therefore similar.

We remark that this proof makes use of the ASA criterion for congruence, FTS,

and Theorem 1. It is a remarkable example of making use of the available tools to
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solve a problem. If we want students to be proficient in problem-solving, we have

to give them excellent examples of how it is done. For this reason, although one

cannot mandate the teaching of this proof in all the eighth grade classrooms, it is

nevertheless recommended that this proof be presented in class if at all possible.

4. Slope of a line and the Pythagorean Theorem

For eighth grade, the significance of the above three criteria for similarity lies not

so much in getting students to know how to prove them as in getting them to learn

how to put them to use. In this section, we give two examples of such applications,

the second one being a proof of the Pythagorean theorem.

A typical example arising from algebra is the following. Given a line L in the

coordinate plane together with two points P = (p1, p2) and Q = (q1, q2) on L. For

this discussion, let the line slant to the right as in the following picture. Let lines

parallel to the coordinate axes and passing through P and Q be drawn. In general,

these pairs of parallel lines meet at two points R and R∗, as shown:
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It will be clear presently that it does not matter whether R or R∗ is used for this

discussion, but the prevailing convention is to use the lower point R. We will follow

this convention. With this understood, the ratio |PR|
|QR| , comparing the vertical side

of the right triangle 4PQR to the horizontal side of the same triangle, is commonly

proposed as a measure of the “degree of steepness” of the line L, and this ratio is

called the slope of the line L.

We hasten to observe that if R∗ is used instead of R, then the two corresponding

ratios |PR|
|QR| and |QR∗|

|PR∗| , are equal because |PR| = |QR∗| and |QR| = |PR∗| (opposite
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sides of a rectangle are equal, see page 16 ). This is the reason that it doesn’t matter

whether R or R∗ is used.

In school textbooks, |PR|
|QR| is called the slope of the line L. This should be cause

for some reflection: After all, if two other points P ′ and Q′ are chosen on L instead

and we form the ratio |P ′R′|
|Q′R′| accordingly, as shown,
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r
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then we would have the quotient |P ′R′|
|Q′R′| instead of |PR|

|QR| . So which is the slope of L,
|P ′R′|
|Q′R′| or |PR|

|QR| ? Fortunately, it turns out that they are equal:

|PR|
|QR|

=
|P ′R′|
|Q′R′|

.

Therefore, the ratio |PR|
|QR| is independent of the choice of the two points P and Q and

is well qualified to be called the slope of L.

The failure of school textbooks to address this issue accounts for much of the non-

learning of linear equations and straight lines in introductory algebra and implicitly

encourages sloppy thinking. A main reason for the CCSS to discuss similar triangles

in the eighth grade is precisely to resolve this issue affirmatively, thereby showing

that the concept of slope is well-defined, in the sense that the ratio |PR|
|QR| remains

the same no matter which two points P and Q on the line L are chosen. For a fuller

discussion, see Section 4 of H. Wu, Introduction to School Algebra.

Let us start from the beginning and do it properly. Given a line L in the coordinate

plane together with two points P = (p1, p2) and Q = (q1, q2) on L. Let lines parallel

to the coordinate axes and passing through P and Q be drawn and let them meet at
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R (recall the convention above about the point R). Now there are two possibilities

for L: it can slant to the right (left picture below) or to the left (right picture below).
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For the line on the left, the slope of the line L is defined as the ratio |PR|
|QR| ,

whereas for the line on the right, the slope is − |PR|
|QR| . Thus the minus sign in the slope

differentiates between the two different slants of the lines. It suffices to consider the

case of the line on the left because the reasoning is entirely similar.

We are going to show that the slope of the line L is independent of the two chosen

points P and Q. Thus we choose two arbitrary points P ′, Q′ on L and we get a point

of intersection R′ in like manner (see left picture above), and we are going to prove:

|PR|
|QR|

=
|P ′R′|
|Q′R′|

,

Therefore this ratio is a property of the line L after all and not of the pair of points

chosen.

To prove the preceding equality, we are going to use the AA criterion for similarity

(page 95 ) to prove that triangles PQR and P ′Q′R′ are similar. Indeed, the lines QR

and Q′R′, being both parallel to the x-axis, are parallel to each other. Theorem 1

(page 87 ) implies that |∠PQR| = |∠P ′Q′R′|. Since ∠PRQ and ∠P ′R′Q′ are right

angles, they are also equal. So the triangles PQR and P ′Q′R′ have two pairs of equal

angles and are therefore similar. By Theorem 2 on page 94 , we get

|PR|
|P ′R′|

=
|QR|
|Q′R′|

This implies
|PR|
|QR|

=
|P ′R′|
|Q′R′|
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by the cross-multiplication algorithm.25 We are done.

As our second application of the AA criterion for similarity, we prove the Pythagorean

Theorem. Let us fix the terminology. Given a right triangle ABC with C being the

vertex of the right angle, then the sides AC and BC are called the legs of 4ABC,

and AB is called the hypotenuse of 4ABC.

HH
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Ba

b
c

Theorem 3 (Pythagorean Theorem). If the lengths of the legs of a right triangle

are a and b, and the length of the hypotenuse is c, then a2 + b2 = c2.

Proof. There is an animation of the following proof created by Larry Francis:

http://www.youtu.be/QCyvxYLFSfU

We will have more to say about this animation later. For the proof proper, we draw

a perpendicular CD from C to side AB of the given 4ABC, as shown:
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We draw this perpendicular because it creates, from the point of view of the AA

criterion for similarity, three similar triangles. For example, right triangles CBD and

ABC are similar because they share ∠B in addition to having equal right angles.

Likewise, right triangles ACD and ABC are similar because they share ∠A. For

25Or rather, by the formal extension of the cross-multiplication algorithm from complex fractions
to arbitrary numbers using the Fundamental Assumption of School Mathematics. See page 88 of
H. Wu, Pre-Algebra (remember, this is an active link).
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beginning students, it may help them to see the similarity of the three triangles better

if we do the following: (1) To 4ACD, apply a suitable counterclockwise rotation

around the vertex C, a reflection across the line LBC , and then a translation to

the left to obtain the 4ACD on the left below. (2) To 4CBD, apply a suitable

counterclockwise rotation around the vertex B, a reflection across the line LBC , and

then a translation to the right to obtain the 4CBD on the right in the following

picture:
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Specifically, for the similar triangles 4ABC and 4ACD, in order to set up the

correct proportionality of sides, Theorem 2 (page 94 ) tells us that we need the cor-

rect correspondences of the vertices. The vertices of the two right angles obviously

correspond, so C of 4ABC corresponds to D of 4CDB. The two triangles share

∠B, so B of 4ABC corresponds to B of 4CDB. Now there is no choice but that A

of 4ABC corresponds to C of 4CDB. Thus we have:

C ↔ D, B ↔ B, A↔ C

Hence
|BA|
|BC| = |BC|

|BD| , so that by the cross-multiplication algorithm,

|BC|2 = |AB| · |BD|

By considering the similar right triangles ABC and ACD, we conclude likewise that
|AC|
|AB| = |AD|

|AC| and

|AC|2 = |AB| · |AD|

Adding, we obtain

|BC|2 + |AC|2 = |AB| · |BD|+ |AB| · |AD| = |AB| ( |BD|+ |DA| ) = |AB|2

This is the same as a2 + b2 = c2. The proof is complete.
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Now the preceding algebraic computation that leads to |BC|2 + |AC|2 = |AB|2 is

very natural and one tends to accept it as is. However, in the animation by Larry

Francis (cited at the beginning of the proof), he makes a very nice observation that,

in fact, the algebra has a geometric interpretation in terms of area. If you have not

watched the animation, I highly recommend that you do.

To the teacher: There are all kinds of “cute” proofs of the Pythagorean The-

orem out there, but you are strongly encouraged to present the preceding proof in

your eighth grade classroom. There are two reasons. One is that at this point of the

geometry curriculum according to the CCSS, students need all the exposure to the

concept of similar triangles they can get, and this proof of the Pythagorean Theorem

serves this purpose surpassingly well. A second reason is that most of the “cute”

proofs of the Pythagorean Theorem involve the concept of area as well as subtle (and

usually hidden) arguments that depend on the Parallel Postulate. The “cuteness” of

these proofs is usually the result of covering up how sophisticated the concept of area

really is and omitting any reference to the Parallel Postulate. These “cute” proofs

deserve to be learned, but should be learned without any cover-ups. In the meantime,

please present the preceding proof, as it is most attractive when viewed from the

perspective of Larry Francis’ animation.

5. The angle sum of a triangle

We now bring closure to the discussion of the AA criterion for similarity. If you

look at all six criteria for congruence and similarity (page 79 and 95 ), you will notice

that the hypothesis of each of them consists of three equalities except for the AA cri-

terion, which has two equalities for angles. It is time to point out that the apparent

difference is an illusion because we will prove the following theorem.

Theorem 4 (Angle Sum Theorem). The angle sum of a triangle (i.e., the

sum of the degrees of the angles in a triangle) is always 180 degrees.

Thus if two pairs of angles in the triangles are equal, then all three pairs of angles

are equal.
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To prove that the angle sum of a triangle is always equal to 180 degrees, let triangle

ABC be given. On the ray from B to C, take a point D so that the segment BD

contains C. Through the point C, draw a line CE parallel to AB, as shown.
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Now |∠A| = |∠ACE| as they are alternate interior angles of AC relative to the

parallel lines AB and CE (Theorem 1(b) on page 87 ). In addition, |∠B| = |∠ECD|
because they are corresponding angles of BD (Theorem 1(a) on page 87 ). Therefore

the angle sum of triangle ABC is equal to the sum of the angles that make up the

straight angle ∠BCD, and we are done.

[Without going into details, we should mention that there are subtle issues

inherent in this proof that we have chosen to neglect.]

6. Volume formulas

In grade 7, we explained why if a (right) rectangular prism has dimensions a, b, c,

its volume is abc cubic units (i.e., if the linear unit is inches, the unit of the volume

measure is inches3, if the linear unit is cm., then the volume measure is in terms of

cm.3), etc. In grade eight, we expand the inventory of volume formulas to include

those of a (generalized) right cylinder, a cone, and a sphere.

First we recall an interpretation of the volume formula for a rectangular prism. If

we have such a prism, as shown,

C

b
aA B

c

D
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and if we call the rectangle ABCD the base of the prism and c its height, then the

area of the base is ab. Therefore the volume abc of the prism can now be expressed

as follows:

(A) volume of rectangular prism = (area of base) × height

In this form, this formula can be generalized in the following way. Let R be a region

in the plane, then the right cylinder over R of height h is the solid which is the

union of all the line segments of length h lying above the plane, so that each segment

is perpendicular to the plane and its lower endpoint lies in R. When a right cylinder

is understood, we usually say “cylinder” rather than “right cylinder”. The regionR is

called the base of the cylinder. Notice that when R is a rectangle, the right cylinder

over R is a rectangular prism, so that we are back to our starting point. Notice also

that the top of a right cylinder (i.e., the points in the cylinder of maximum distance

from the base) over R is also a planar region which is congruent to R, but we will

not spend time to explain what “congruent” means in three dimensions and will use

the term in a naive sense.

h

R

Then we have:

(B) volume of right cylinder over R of height h = (area of R) × h

So if R is a rectangle, this yields volume formula (A) for a rectangular prism, but if

R is a circle of radius r, then the right cylinder over a circle of radius r is called a

right circular cylinder. The preceding formula then implies

(C) volume of right circular cylinder of radius r and height h = π r2h

The case of a right circular cylinder is the most important example of a “cylin-

der” in school mathematics, but the reason we introduce the more general concept

of a cylinder over an arbitrary planar region is that the explanations of the volume
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formulas (B) and (C) are the same. It is also important to recognize that there is

only one general volume formula for cylinders, i.e., (B).

Let P be a point in the plane that contains the top of a cylinder of height h. Then

the union of all the segments joining P to a point of the base R is a solid called a

cone with base R and height h (see discussion in grade 6, page 44). The point

P is the top vertex of the cone. Here are two examples of such cones.

h

P

P

h

One has to be careful with this use of the word “cone” here. If the base R is a circle,

then this cone is called a circular cone (see left picture below). If the vertex of a

circular cone happens to lie on the line perpendicular to the circular base at its center,

then the cone is called a right circular cone (see picture second from left below).

In everyday life, a “cone” is implicitly a right circular cone, and in many textbooks,

this is how the word “cone” is used. Recall that if the base is a square, then the cone

is called a pyramid (see middle picture below) and if the base is a triangle, the cone

is called a tetrahedron (see right picture below); see the discussion in grade 6 on

page 44).

The fundamental formula here is

(D) volume of cone with base R and height h

= 1
3 (volume of cylinder with same base and same height)
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Of great interest here is the factor 1
3 , which is independent of the shape of the base.

How this factor comes about is most easily seen through the actual computations

using calculus. However, even without the full arsenal of calculus, one can see the

reason for the 1
3 in an elementary way, as follows. Consider the unit cube, i.e., the

rectangular prism whose sides all have length 1. The unit cube has a center O, and

the simplest definition of O may be through the use of the mid-section, which is the

square that is halfway between the top and bottom faces (see the dotted square in the

following picture), and let O be the intersection of the diagonals of the mid-section.

It is easy to convince oneself, at least at the intuitive level by looking at pictures,

that O is equidistant from all the vertices and also from all six faces.

O

Then the cone obtained by joining O to all the points of one face is congruent26 to

the cone obtained by joining O to all the points of any other face. There are six such

cones, one for each face.

Let C be the cone joining O to the base of the unit cube; it is the red cone above.

Because congruent geometric figures have the same volume (see (c) on page 39 ), and

because six cones congruent to C make up the unit cube, and the unit cube has volume

1 by definition, we obtain:

volume of C = 1
6

We have to interpret this formula the right way in order to bring out its significance.

Consider the rectangular prism which is the lower half of the unit cube, i.e., the part

of the unit cube that is below the mid-section:

This particular rectangular prism has volume 1
2 , and since 1

6 is equal to 1
3 ×

1
2 = 1

3
× (volume of this short prism), we have

26Again we leave undefined the meaning of “congruent” in this context and allow it to be under-
stood in a naive sense.
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O

volume of the cone C = 1
3 (volume of cylinder with same base and same height)

Here we see the emergence of the factor of 1
3 , and this is no accident because, using

ideas from calculus, one can show that if the preceding formula is true for one cone

C, then it is true for all cones.

Finally, we come to the volume formula of a sphere of radius r:

(E) volume of sphere of radius r = 4
3 π r

3

The derivation of this formula is sophisticated and will have to be left to a high

school course. (See the last section on “Length, area, and volume” of the reference,

Teaching Geometry in Grade 8 and High School According to the Common Core

Standards, listed on page 63 .) The discovery of this formula was a major event in

the mathematics of antiquity. The first one to do it was Archimedes (287–212 B.C.),

but it was also independently discovered by Zu Chongzhi (A.D. 429–501) and his son

Zu Geng (circa A.D. 450–520), by essentially the same method. 27

27This method has come to be known as Cavalieri’s Principle (Bonaventura Cavalieri, 1598-1647).
Names in mathematics are not always historically accurate.
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HS GEOMETRY

Congruence G-Co

Experiment with transformations in the plane

1. Know precise definitions of angle, circle, perpendicular line, parallel line, and line

segment, based on the undefined notions of point, line, distance along a line, and distance

around a circular arc.

2. Represent transformations in the plane using, e.g., transparencies and geometry

software; describe transformations as functions that take points in the plane as inputs and

give other points as outputs. Compare transformations that preserve distance and angle

to those that do not (e.g., translation versus horizontal stretch).

4. Develop definitions of rotations, reflections, and translations in terms of angles,

circles, perpendicular lines, parallel lines, and line segments.

5. Given a geometric figure and a rotation, reflection, or translation, draw the trans-

formed figure using, e.g., graph paper, tracing paper, or geometry software. Specify a

sequence of transformations that will carry a given figure onto another.

Understand congruence in terms of rigid motions

6. Use geometric descriptions of rigid motions to transform figures and to predict the

effect of a given rigid motion on a given figure; given two figures, use the definition of

congruence in terms of rigid motions to decide if they are congruent.

7. Use the definition of congruence in terms of rigid motions to show that two trian-

gles are congruent if and only if corresponding pairs of sides and corresponding pairs of

angles are congruent.

8. Explain how the criteria for triangle congruence (ASA, SAS, and SSS) follow from
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the definition of congruence in terms of rigid motions.

Prove geometric theorems

9. Prove theorems about lines and angles. Theorems include: vertical angles are

congruent; when a transversal crosses parallel lines, alternate interior angles are congru-

ent and corresponding angles are congruent; points on a perpendicular bisector of a line

segment are exactly those equidistant from the segment’s endpoints.

10. Prove theorems about triangles. Theorems include: measures of interior angles

of a triangle sum to 180; base angles of isosceles triangles are congruent; the segment

joining midpoints of two sides of a triangle is parallel to the third side and half the length;

the medians of a triangle meet at a point.

11. Prove theorems about parallelograms. Theorems include: opposite sides are con-

gruent, opposite angles are congruent, the diagonals of a parallelogram bisect each other,

and conversely, rectangles are parallelograms with congruent diagonals.

Make geometric constructions

12. Make formal geometric constructions with a variety of tools and methods (com-

pass and straightedge, string, reflective devices, paper folding, dynamic geometric soft-

ware, etc.). Copying a segment; copying an angle; bisecting a segment; bisecting an angle;

constructing perpendicular lines, including the perpendicular bisector of a line segment;

and constructing a line parallel to a given line through a point not on the line.

13. Construct an equilateral triangle, a square, and a regular hexagon inscribed in a

circle.
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Similarity, right triangles, and trigonometry G-Srt

Understand similarity in terms of similarity transformations

1. Verify experimentally the properties of dilations given by a center and a scale factor:

a. A dilation takes a line not passing through the center of the dilation to a parallel

line, and leaves a line passing through the center unchanged.

b. The dilation of a line segment is longer or shorter in the ratio given by the scale

factor.

2. Given two figures, use the definition of similarity in terms of similarity transforma-

tions to decide if they are similar; explain using similarity transformations the meaning of

similarity for triangles as the equality of all corresponding pairs of angles and the propor-

tionality of all corresponding pairs of sides.

3. Use the properties of similarity transformations to establish the AA criterion for

two triangles to be similar. Prove theorems involving similarity.

4. Prove theorems about triangles. Theorems include: a line parallel to one side of

a triangle divides the other two proportionally, and conversely; the Pythagorean Theorem

proved using triangle similarity.

5. Use congruence and similarity criteria for triangles to solve problems and to prove

relationships in geometric figures.

Define trigonometric ratios and solve problems involving right triangles

6. Understand that by similarity, side ratios in right triangles are properties of the

angles in the triangle, leading to definitions of trigonometric ratios for acute angles.

7. Explain and use the relationship between the sine and cosine of complementary

angles.
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8. Use trigonometric ratios and the Pythagorean Theorem to solve right triangles in

applied problems.

Apply trigonometry to general triangles

10. (+) Prove the Laws of Sines and Cosines and use them to solve problems.

11. (+) Understand and apply the Law of Sines and the Law of Cosines to find un-

known measurements in right and non-right triangles (e.g., surveying problems, resultant

forces).

Circles G-C

Understand and apply theorems about circles

1. Prove that all circles are similar.

2. Identify and describe relationships among inscribed angles, radii, and chords. In-

clude the relationship between central, inscribed, and circumscribed angles; inscribed

angles on a diameter are right angles; the radius of a circle is perpendicular to the tangent

where the radius intersects the circle.

3. Construct the inscribed and circumscribed circles of a triangle, and prove properties

of angles for a quadrilateral inscribed in a circle.

4. (+) Construct a tangent line from a point outside a given circle to the circle.

Geometric measurement and dimension G-Gmd

Explain volume formulas and use them to solve problems

1. Give an informal argument for the formulas for the circumference of a circle, area

of a circle, volume of a cylinder, pyramid, and cone. Use dissection arguments, Cavalieri’s
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principle, and informal limit arguments.

2. (+) Give an informal argument using Cavalieri’s principle for the formulas for the

volume of a sphere and other solid figures.

3. Use volume formulas for cylinders, pyramids, cones, and spheres to solve problems.

u
Some key ideas in high school geometry

There are many geometry standards for high school; we have listed only those that

make up the core of a typical high school geometry course. The following commentary

on such a course will focus on a few key ideas:

1. Basic assumptions and definitions (page 114 )

2. Proofs of the first theorems (page 131 )

3. The congruence criteria for triangles (page 139 )

4. The number π (page 149 )

5. Pedagogical implications (page 152 )

One cannot understand the CCSS approach to high school geometry without a

knowledge of the pedagogical problems inherent in such a course and the reality of

the high school geometry classroom in the past two decades. One such discussion is

given in (recall: this is an active link):

H. Wu, Euclid and high school geometry

For further details of the logical development outlined below, together with a treat-

ment of other topics not mentioned here (e.g., similarity, circles, etc.), see
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H. Wu, Teaching Geometry in Grade 8 and High School

According to the Common Core Standards (to be made

available, hopefully after June 15, 2012)

A main feature of the CCSS is the seamless transition from eighth grade geometry

to high school geometry. In broad terms, the key geometric ideas (basic rigid motions

and dilations) are gently introduced in grade eight through hands-on activities; the

high school course then begins the normal mathematical study of the plane by building

on students’ prior empirical experience with these transformations. In lieu of the

usual axioms, the high school course begins with a precise summary this empirical

experience in the form of eight assumptions (see in particular page 73 ). Insofar as

these assumptions go straight to the essence of congruence—one of the mysteries of

most students’ learning experience—they are more intuitive and more accessible than

the axioms of the usual abstract approach. Due to space limitations, the following

commentary is devoted mainly to the transition from the discussion of rigid motions to

the proofs of the three congruence criteria for triangles (SAS, ASA and SSS), but not

to the subsequent mathematical development once these criteria are established. For a

detailed discussion of this development, one may consult the second of the documents

listed above.

In order to lay a firm foundation for the geometric proofs, we need a clear enunci-

ation of the basic definitions and assumptions. The two are intertwined. Sometimes

a definition must be in place first before the assumption can be stated: the Parallel

Postulate would make no sense if we do not know the meaning of “parallel lines”.

At other times, a definition becomes meaningful only after an assumption has been

made: the definition of a “ray” has mathematical substance only because the Line

Separation assumption (page 116 ) guarantees that every point on a line determines

two rays with that point as vertex. The first section below will briefly summarize

the main points of this foundational material. The second and third sections outline

the path from these assumptions to the proofs of the basic congruence criteria for

triangles (ASA, SAS, and SSS) and, in so doing, they realize the content of Standard

G-Co 8:

Explain how the criteria for triangle congruence (ASA, SAS, and SSS) follow

from the definition of congruence in terms of rigid motions.
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It will be seen that this can be done quite quickly, so that students will be spared

the usual doldrums of axiomatic treatments that spend more than a hundred pages

to lay the groundwork for the proofs of theorems of the following type:

• Any two right angles are congruent.

• Every angle has exactly one bisector.

• If M is a point between points A and C on a line L, then M and A are on the

same side of any other line that contains C.

q q q������
��

A M C
L

There is something to be said about the value of being able to prove these geo-

metrically obvious facts, but for most students, spending two to three months of the

school year just to learn about such proofs does not constitute an inspiring learning

experience. The goal of the Common Core Standards is to steer clear of such an

approach to geometry by putting geometry on an equal footing with any other part

of school mathematics. Geometry can be learned the same way fractions or algebra

is learned: there should be reasoning and there should be proofs in every part of the

mathematics curriculum, but there should also be a minimum of formalism.

In two passages on page 148 and page 152 , we point out how this mathematical

approach to plane geometry impacts the teaching of geometry.

1. Basic assumptions and definitions

We start from the beginning and go through all the known geometric concepts

one by one in a systematic fashion, with precision but without any preconceptions.

We will begin with a precise enunciation of what we assume to be known about

the plane .

We will not explain what a point is or what a line is other than to say that we

understand them in the intuitive sense and that a “line” stands for a “straight line”

that is infinite in both directions. The eight assumptions are listed as (A1)–(A8) and
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they can all be found in this section. Every single one of them is intuitively obvious,

and the only reason we enunciate them is to make sure that we all have a clearly

defined common starting point.

(A1) Through two distinct points passes a unique line.

Two lines are said to be distinct if there is at least one point that belongs to

one but not the other; otherwise we say the lines are the same. Lines that have no

point in common are said to be parallel. In symbols, L1 parallel to L2 is denoted by

L1 ‖ L2.

(A2) (Parallel Postulate) Given a line L and a point P not on L. Then through

P passes at most one line that does not intersect L.

In other words, we assume as obvious that for a point P in the plane not lying

on a line L, every line that contains P intersects L except possibly for one line. In

school textbooks, the statement of the Parallel Postulate also includes the statement

that there is a line passing through P and parallel to L. However, (A2) above is

the original version of the Parallel Postulate, and we shall see in the Corollary to

Theorem 1 on page 133 that the existence of such a parallel line can in fact be proved

once we know there are enough rotations in the plane. Thus, contrary to what is

normally done in school textbooks, our formulation of the Parallel Postulate merely

asserts that there is no more than one parallel line.

It will be seen that the Parallel Postulate dominates plane geometry by intervening

in logical arguments at critical moments.

If A and B are two distinct points, then by (A1), there is a unique line containing

A and B. We may consider this as a number line. Denote it by LAB and call it

the line joining A and B. On LAB, denote by AB the collection of all the

points between A and B together with the points A and B themselves (recall that

on a number line, we know what it means for a number to be between two other

numbers). We call AB the line segment, or more simply the segment joining A

and B, and the points A and B are called the endpoints of the segment AB. The

term segment will be used in general to refer to the segment joining a pair of points.
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With the concept of segment available, we are now in a position to define a poly-

gon. (In the classroom, one would start with the definition of a triangle and a quadri-

lateral before tackling the general case, and care should be given to motivating the

use of subscripts.) Let n be any positive integer ≥ 3. An n-sided polygon (or more

simply an n-gon) is by definition a geometric figure consisting of n distinct points

A1, A2, . . . , An in the plane, together with the n segments A1A2, A2A3, . . . , An−1An,

AnA1 so that none of these segments intersects any other except at the endpoints as

indicated, i.e., A1A2 intersects A2A3 at A2, A2A3 intersects A3A4 at A3, etc. In sym-

bols: the polygon will be denoted by A1A2 · · ·An. If n = 3, the polygon is called a

triangle; n = 4, a quadrilateral; n = 5, a pentagon; and if n = 6, a hexagon.

Given polygon A1A2 · · ·An, the Ai’s are called the vertices and the segments A1A2,

A2A3, etc. the edges or sometimes the sides.

In order to define angles, we need to know a little bit more about lines. To this

end, we first introduce a definition. A subset R in a plane is called convex if given

any two points A, B in R, the segment AB lies completely in R.

(A3) (Line separation) A point P on a line L separates L into two non-empty

convex subsets L+ and L−, called half-lines, so that:

(i) Every point of L is in one and only one of the sets L+, L−, and the

set {P} consisting of the point P alone.

(ii) If two points A and B belong to different half-lines, then the line

segment AB contains P .

PPA B

It follows from (i) that any two of the sets L+, L−, and {P} are disjoint, i.e., do

not share a point in common. It also follows from the convexity of L+ and L− that

if two points A, B belong to the same half-line, then the line segment AB does not

contain P :

PP A B
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The set consisting of the point P and the points from a half-line, L+ or L−, is

called a ray. We also say these are rays issuing from P . If we want to specifically

refer to the ray containing A, we use the symbol RPA. We will also refer to RPA as

the ray from P to A. Similarly, the ray containing B issuing from P is denoted by

RPB. The point P is the vertex of RPB. If P is between A and B, then the two

rays RPA and RPB have only the vertex P in common, and each ray is, intuitively,

infinite in only one direction.

Two rays are distinct if there is a point in one that does not lie in the other. An

angle is the union of two distinct rays with a common vertex. (This is the definition

adopted by the CCSS; see page 7 .) The angle formed by the two rays ROA and ROB

will be denoted by ∠AOB.
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A

If A, O, B are collinear (i.e., lie on a line so that O is between A and B), we say

the angle is a straight angle. If ROA and ROB coincide, then we do not have an

angle according to the definition above, but we make an exception and call it the

zero angle. Now we have to face up to the fact that the intuitive concept of an angle

is not just “two rays with a common vertex” but also “the space between these two

rays”. In other words, if ∠AOB is neither the zero nor the straight angle, which of

the following two subsets of the plane do we have in mind when we say ∠AOB, the

space indicated by s or the one indicated by t?

t

A

BOO

A

B

s

To resolve this difficulty, we need a precise way to differentiate between the two.

(A4) (Plane separation) A line L separates the plane into two non-empty

convex subsets, L and R, called half-planes, so that:
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(i) Every point in the plane is in one and only one of the sets L, R, and

L.
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(ii) If two points A and B in the plane belong to different half-planes, then

the line segment AB must intersect the line L.
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Two points that lie in the same half-plane of L are said to be on the same side

of L, and two points that lie in different half-planes are said to be on opposite

sides of L. The union of either L or R with L is called a closed half-plane.

Now we return to an angle ∠AOB which is neither the zero angle nor a straight

angle. The rays ROA, ROB determine two subsets of the plane, one of them is the

intersection of the following two closed half-planes:

the closed half-plane of the line LOA containing B, and

the closed half-plane of the line LOB containing A.

It is straightforward to show that the intersection of a finite number of convex sets

is convex, and that closed half-planes are also convex (we already know that the

half-planes are convex). Therefore the intersection of these two closed half-planes

is convex, and is suggested by the shaded set in the following figure (note that the

shading only covers a finite portion of a set extending infinitely to the right).

O

A

B
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We will refer to this set as the convex part of ∠AOB, and this is the set that

corresponds to our intuitive notion of what ∠AOB is. When we refer to the convex

part of an angle, we sometimes denote it by a single letter, e.g., ∠O, if there is no

danger of confusion. See the part indicated by s in the following:

t

A

BOO

A

B

s

On the other hand, there will be occasions to use the other subset of the plane

determined by the rays ROA, ROB. This would be the nonconvex part of ∠AOB

as indicated by t above. Precisely, this is all the points that do not lie in the convex

part of ∠AOB, together with all the points on both of the rays, ROA and ROB.

Given an angle ∠AOB that is neither the straight angle nor the zero angle, then we

see that it is necessary to specify whether we mean the convex part or the nonconvex

part of ∠AOB. Once that is done, it makes sense to say whether a point of the plane

belongs to the angle or not. For example, in the pictures below, if ∠AOB refers

to the convex part, then P belongs to ∠AOB while Q does not, but if the nonconvex

part is meant, then P does not belong to ∠AOB but Q does.

Q

O

A

B
s

.
P

A

BO

t

Q
.

.
P

.

Unless stated otherwise, a (nonzero and non-straight) angle will refer to the convex

part of the angle.

Our next goal is to formalize the concept of the length of a segment in the plane

and introduce the measurement of angles in terms of degree. Length has to come first,

so we start with that. We have thus far taken the concept of length lightly because it

seems to come naturally to us. However, if we look at it critically, it is not as simple
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as it appears. Suppose we have a number line, then even the length of a segment I on

the number line has to be defined with the use of a translation. Indeed, let us recall

how that is done: we translate the segment I until its left endpoint is over 0, then

the number on which its right endpoint rests is by definition the length of I. If the

segment now lies on a line L in the plane, then because there is no pre-ordained unit

on L (i.e., we don’t know in advance how far apart 0 and 1 may be), the length of the

segment becomes indeterminate unless there is a way to consistently “organize”, so

to speak, all the unit segments on all the lines which lie in the plane. This “organiza-

tion” is made possible by the concept of distance in the plane. The next assumption

spells out part of the basic properties we expect of distance; the remaining properties

are included in assumption (A7) on page 131 .

(A5) To each pair of points A and B of the plane, we can assign a number

dist(A,B) ≥ 0 so that

(i) dist(A,B) = dist(B,A).

(ii) dist(A,B) ≥ 0, and dist(A,B) = 0 ⇐⇒ A and B coincide. (The

symbol “⇐⇒” stands for “is equivalent to”.)

(iii) If A, B, C are collinear points, and C is between A and B, then

dist(A,B) = dist(A,C) + dist(C,B)

Of course, condition (iii) is one reason why the assignment of a nonnegative

number dist(A,B) to each pair of points A and B cannot be random or arbitrary.

(The other reason is encoded in assumption (A7) below.) Once we have the concept

of distance between points in the plane, we can define, for any two points A and B

in the plane, the length of the segment AB, denoted by |AB|, to be dist(A,B).

In effect, what the concept of distance has done is to decree that, on each line, a unit

segment has to be a segment whose endpoints are apart by a distance equal to 1.

That done, one can see that the length between two points A and B in the plane will

now be the same as the usual length of the segment AB on the line LAB, which is

now a number line with a prescribed unit segment.

We say two segments are equal if they have the same length.
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The concept of distance allows us to formally introduce the concept of a circle.

Fix a point O. Then the set of all the points A in the plane so that dist(O,A) is a

fixed positive constant r is called the circle of radius r about O. The point O is

called the center of the circle. A line passing through the center O will intersect the

circle at two points, say P and Q; the segment PQ is then called a diameter of the

circle and the segment OP (or OQ) is called a radius of the circle.

A circle whose radius is of length 1 is called a unit circle.

We need one more definition before we can introduce the concept of the degree

of an angle. Given an angle ∠AOB with either the convex part or the nonconvex

part specified, we say two angles ∠AOC and ∠COB, with a common side ROC , are

adjacent angles with respect to ∠AOB if C belongs to ∠AOB (see definition

on page 119 ) and ∠AOC and ∠COB are understood to be part of ∠AOB. For

example, if ∠AOB is understood to denote the convex part, then in the following

picture, ∠AOC has to mean the convex (shaded) part on the left rather than the

nonconvex part indicated by the arc on the right.

OO

A

B

C

A

C

B

On the other hand, if ∠AOB is understood to denote the nonconvex part as in the

picture below, then the point C again belongs to ∠AOB, and ∠AOC and ∠COB

are adjacent angles with respect to ∠AOB, provided ∠AOC is understood to be the

convex (shaded) part on the left rather than the nonconvex part indicated by the arc

on the right.
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Adjacent angles ∠AOC and ∠COB (with respect to ∠AOB) are the analogs, among

angles, of segments AC, CB so that A, B, C are collinear and C is between A and

B; they will allow us to formulate the analog of condition (iii) in assumption (A5)

above.

Now we can introduce the concept of the degree of an angle by way of an assump-

tion. Intuitively, every angle has a degree, a straight angle should be 180 degrees,

and the “full” angle should be 360 degrees. Our assumption now takes the following

form:

(A6) To each angle ∠AOB, we can assign a number |∠AOB|, called its degree,

so that

(i) 0 ≤ |∠AOB| < 360◦, where the small circle ◦ is the abbreviation

of degree. Moreover, if a ray ROB and a number x are given so that

0 < x < 360, and if a half-plane of the line LOB is specified, then there

is a unique angle AOB so that |∠AOB| = x◦ and the ray ROA lies in the

specified half-plane of LOB.

(ii) |∠AOB| = 0◦ ⇐⇒ ∠AOB is the zero angle, and |∠AOB| = 180◦

⇐⇒ ∠AOB is a straight angle.

(iii) If ∠AOC and ∠COB are adjacent angles with respect to ∠AOB,

then

|∠AOC|+ |∠COB| = |∠AOB|

One can give an intuitive discussion of how to reconcile this definition of degree with

the one on page 9 .

Suppose ∠AOB is the zero angle (so that the rays ROA and ROB coincide). Then

the angle corresponding to the nonconvex subset of the zero angle, which is then the
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whole plane, is sometimes called the full angle. We will agree to define the degree

of a full angle to be 360◦ so that (iii) in (A6) is now true without restrictions.

The existence of the concept of degree allows us to define that two angles are

equal if they have the same degree.

We note that by themselves, assumptions (A5) on distance and (A6) on degree

do not have much substance. Their significance will be revealed only when we make

the next assumption that the basic rigid motions are distance-preserving and degree-

preserving and prove that there are “plenty of” basic rigid motions in the plane (for

the latter, see Lemmas 2, 3, and 5 on page 136, page 136, and page 138, respectively).

With the measurements of angles available, we can introduce some standard ter-

minology for angles and polygons. Two angles are defined to be equal if they have

the same degree. An angle of 90◦ is called a right angle. An angle is acute if it

is less than 90◦, and is obtuse if it is greater than 90◦. There are analogs of these

names for triangles, namely, a triangle is called a right triangle if one of its angles is

a right angle, an acute triangle if all of its angles are acute, and an obtuse triangle

if (at least) one of its angles is obtuse. (In view of the Angle Sum Theorem in grade

8, page 102, at most one angle of a triangle can be obtuse.)

Let two lines meet at O, and suppose one of the four angles, say ∠AOB as shown,

is a right angle.

B′

A′

B

A

O
q

Then one sees easily that all the remaining angles are also right angles. It is therefore

unambiguous to define the two lines to be perpendicular if an angle formed by the

two lines at the point of intersection is a right angle. In symbols: LAO ⊥ LOB in

the notation of the preceding figure, although it is equally common to write instead,

AO ⊥ OB. In general, if a point C belongs to an angle ∠AOB (see page 119 ), the
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ray ROC is called an angle bisector of ∠AOB if the adjacent angles ∠AOC and

∠COB (with respect to ∠AOB) are equal.

B

O

A

C

Sometimes we also say less precisely that the line LOC (rather than the ray

ROC) bisects the angle AOB. It is clear that an angle has one and only one angle

bisector (by (i) of assumption (A6)). Therefore if CO ⊥ AB where O is a point of

AB, as shown below,

OA B

C

then CO is the unique angle bisector of the straight angle ∠AOB. Hence,

Let L be a line and O a point on L. Then there is one and only one line

passing through O and perpendicular to L.

We can now complete the list of standard definitions about lines and segments. If

AB is a segment, then the point O in AB so that |AO| = |OB| is called the midpoint

of AB. Analogous to the angle bisector, the perpendicular bisector of a segment

AB is the line perpendicular to LAB and passing through the midpoint of AB. It

follows from the uniqueness of the line perpendicular to a line passing through a given

point that there is one and only one perpendicular bisector of a segment.

We now introduce some common names for certain triangles and quadrilaterals.

An equilateral triangle is a triangle with three sides of the same length, and an

isosceles triangle is one with at least two sides of the same length. A quadrilateral

all of whose angles are right angles is called a rectangle. A rectangle all of whose

sides are of the same length is called a square. Be aware that at this point, we do not

124



know whether there is a square or not, or worse, whether there is a rectangle or not. A

quadrilateral with at least one pair of opposite sides that are parallel is called a trape-

zoid. A trapezoid with two pairs of parallel opposite sides is called a parallelogram.

We conclude by making a general observation about angles that follows easily

from assumption (A6)(i):
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Lemma 1. Given two equal angles ∠MAB and ∠NAB with one side RAB in com-

mon and M and N are on the same side of the line LAB, then the other sides RAM

and RAN coincide.

At this point, we begin the discussion of the most substantial part of definitions

and assumptions by taking on the basic rigid motions. In eighth grade, we intro-

duced them as rotations, reflections, and translations, and we did so mostly through

the use of transparencies. Now we are going to define them precisely, and to this end,

we introduce the concept of a transformation F of the plane as a rule that assigns

to each point P of the plane a (single) point F (P ) of the plane. As in grade 8, F (P )

is called the image of P by F and often we speak of F mapping P to F (P ). If

S is a geometric figure in the plane (i.e., a subset of the plane), then the collection

of all the points F (Q) where Q is a point of S is called the image of S by F , which

is usually denoted by F (S). We likewise say F maps S to F (S).

We now give in succession the definitions of the basic rigid motions: rotation,

reflection, and translation. Before we give the definition of rotation, we mention

explicitly that we will freely avail ourselves of the concepts of clockwise direction

and counterclockwise direction on a circle. Because a 180◦ angle is the straight

angle, if a point B is fixed on a circle with center O, then all the points A so that

A is in the counterclockwise (respectively, clockwise) direction of B and so that 0 <

|∠AOB| < 180◦ will lie in a half-plane of the line LOB, and all the points A so that
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180◦ < |∠AOB| < 360◦ lie in the opposite half-plane. In the counterclockwise case,

these would be the upper half-plane and lower half-plane, respectively, in the following

pictures.

OB

A

O

A

B

The whole discussion can be made more precise if we are willing to engage in more

formalism and introduce some elaborate definitions, but that may not be the best use

of class time for the learning of geometry at this juncture.

Rotation. The rotation Ro of t degrees (−360 < t < 360) around a given

point O, called the center of the rotation, is a transformation of the plane defined

as follows. Given a point P , the point Ro(P ) is defined as follows. The rotation is

counterclockwise or clockwise depending on whether the degree is positive or negative,

respectively. For definiteness, we first deal with the case where 0 ≤ t < 360. If P = O,

then by definition, Ro(O) = O. If P is distinct from O, then by definition, Ro(P ) is

the point Q on the circle with center O and radius |OP | so that |∠QOP | = t◦ and

so that Q is in the counterclockwise direction of the point P . We claim that this

assignment is unambiguous, i.e., there cannot be more than one such Q. Indeed, if

t = 180, then Q is the point on the circle so that PQ is a diameter of the circle. If

t = 0, then Q = P . Now if 0 < t < 180, then all the Q’s in the counterclockwise

direction of the point P with the property |∠QOP | = t lie in the half-plane of the

line LOP that contains Q, and if 180 < t < 360, then all the Q’s in the clockwise

direction of the point P with the property |∠QOP | = t lie in the half-plane of the line

LOP not containing Q. By Lemma 1 (page 125 ), there is only one such Q (see the

pictures below). Thus Ro is well-defined, in the sense that the rule of assignment

is unambiguous. Notice that if t = 0, then Ro is the identity transformation I of the

plane.
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Now suppose −360 < t < 0. Then by definition, we rotate the given point P

clockwise on the circle that is centered at O with radius |OP |. Everything remains the

same except that the point Q is now the point on the circle so that |∠QOP | = |t|◦ and

Q is in the clockwise direction of P (see the pictures below). We define Ro(P ) = Q.

| |t

P

Q

O

Q

P

O

t

Reflection. The reflection R across a given line L, where L is called the

line of reflection, assigns to each point on L the point itself, and to any point P

not on L, R assigns the point R(P ) which is symmetric to it with respect to L,

in the sense that L is the perpendicular bisector (page 124 ) of the segment joining P

to R(P ).

r r
r r
R(P ) P

L

Q R(Q)

Translation. The translation T along a given vector −→v assigns the point D

to a given point C in the following way. First, a vector is defined as in Grade 8, page
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68 . Let the starting point and endpoint of −→v be A and B, respectively. First assume

C does not lie on line LAB. Draw the line ` parallel to line LAB passing through C.

The line L passing through B and parallel to the line LAC then intersects line ` at a

point D (L and ` must intersect because the Parallel Postulate says that through the

point C, LAC is the only line parallel to L and therefore ` is not parallel to L). By

definition, T assigns the point D to C, i.e., T (C) = D.
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If C lies on the line LAB, then the image D is by definition the point on the line LAB

so that the direction from C to D is the same as the direction from A to B and so

that |CD| = |AB|. (Recall that we may regard LAB as the number line so that all

the points on LAB are now numbers; then the direction from C to D being the same

as the direction from A to B means D is the number so that D − C = B − A.)
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Observe that if
−→
0 is the zero vector, i.e., the vector with 0 length, then the transla-

tion along
−→
0 is the identity transformation I.

We now take a critical look at the preceding definitions.

The definition of rotation is straightforward, but the definitions of translation

and reflection raise some unanswered questions. In the definition of translation, the

statement that we take L to be the line passing through B and parallel to LAC begs

the question of how we know that there is such a line L. Recall that the Parallel

Postulate as formulated on page 115 does not guarantee that there is such a line,
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only that there is no more than one such line. Fortunately, this issue will be quickly

disposed of by the Corollary to Theorem 1 on page 133 . The difficulty with the

definition of reflection is, however, more knotty, and we will explain it as follows. Let

a line L be given and let P be a point not lying on L. Let the reflection across L be

denoted by R. The definition of the point R(P ), to be denoted more simply by P ′,

is that L is the perpendicular bisector of the segment PP ′. Implicit in this definition

is the fact that (a) there is such a point P ′ so that L is the perpendicular bisector of

the segment PP ′, and (b) there is only one such point P ′. Neither is obvious at the

moment. The need for (a) is obvious, but the need for (b) maybe less so. The fact

is, if there is another point Q distinct from P ′ so that L is the perpendicular bisector

of PQ, then the definition of a reflection implies that we can also define R(P ) = Q.

This would then raise the question about which of the two points R is going to assign

to P , P ′ or Q? (A transformation, by definition, assigns to a given point a single

point without ambiguity.)

If we cannot verify that both (a) and (b) are valid, then the concept of a reflection

is not well-defined on two levels. Given a line L and a point P in the plane, either

the reflection R across L does not know which point to assign to P (this would be

the case if (a) fails), or there is more than one candidate for such a P ′ so that the

assignment of R to P becomes ambiguous (this would be the case if (b) fails).

We will resolve this difficulty by proving the following theorem, and in the pro-

cess of doing this, we shall resolve the difficulty in the definition of translation as well.

Theorem. Given a line L and a point P , there is one and only one line passing

through P and perpendicular to L.

Assuming this theorem, (a) is easily seen to be true because if there is such a line,

we simply let P ′ be the point on this line on the other side of L, so that |PO| = |P ′O|,
where O is the intersection of this line with L, as shown.
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Moreover, (b) is also true because, if there is another point Q so that L is also the

perpendicular bisector of PQ, then in particular PQ ⊥ L. But we know there is only

one such line, so the two lines LPP ′ and LPQ coincide and the point Q falls on LPP ′ .

It follows that Q and P ′ are two points on the same half-line of the line LPP ′ with

respect to O and |QO| = |P ′O| (= |PO|). Hence Q = P ′ and (b) is also true.

We will prove the Theorem in the next section. Because the definitions of reflection

and translation come after the definition of rotation, we will be able to avail ourselves,

for the proof of this Theorem, of some properties that we will assume about rotations.

To this end, and for the development of plane geometry as a whole, we now state our

assumptions about rotations. These assumptions should impress the students as being

completely unexceptional because of the hands-on experiences they have had with the

basic rigid motions in grade 8. Precisely, we assume that:

Ro1. Rotations map lines to lines, rays to rays, and segments to segments.

Ro2. Rotations are distance-preserving (and therefore length-preserving), mean-

ing that the distance between the images of two points is always equal to the

distance between the original two points.

Ro3. Rotations are degree-preserving, meaning that the degree of the image of an

angle is always equal to the degree of the original angle.

Note that, as in grade 8, assumption Ro1 guarantees that a rotation maps an angle

to an angle (see page 74 ), so that assumption Ro3 makes sense.

Ultimately, we have to make the same assumptions about not just rotations, but

also reflections and translations as well. Therefore, instead of giving a formal status

to Ro1, Ro2, and Ro3, we make the following comprehensive assumption about all

basic rigid motions that subsumes Ro1–Ro3.

130



(A7) The basic rigid motions (rotations, reflections, and translations) have the

following properties:

(i) A basic rigid motion maps a line to a line, a ray to a ray, and a

segment to a segment.

(ii) A basic rigid motion is distance-preserving and degree-preserving.

Finally, the next assumption has to do with the intuitive fact that the angle bi-

sector of ∠A in a triangle ABC must intersect side BC. Although your gut reaction

may be “how can it be otherwise?”, it is well to also recognize that, gut feelings

notwithstanding, there is no way we can explain, logically using what we know thus

far, why this must be the case. If we want to claim that this is true, the way to do

so is to add another assumption, which will be our last.

(A8) (Crossbar axiom) Given a convex angle AOB, then for any point C in

∠AOB, the ray ROC intersects the segment AB (at the point D in the following

figure).
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It is now clear that (A8) implies that the angle bisector of an angle in a triangle must

intersect the opposite side.

2. Proofs of the first theorems

The main goal of this section is to prove the Theorem on page 129 using only

assumptions Ro1–Ro3 on page 130. In the process, we will also justify the definition

of a translation. The following theorem is a critical first step toward this goal.

Theorem 1. Let L be a line and O be a point not lying on L. Let R be the 180

degree rotation around O. Then R maps L to a line parallel to L itself.
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Because a rotation of 180 degrees will be the main tool for the proofs of the first

few theorems, we describe it explicitly. Let the center of rotation be O and let R be

the 180 degree rotation around O. Given a point P distinct from O, let P ′ denote the

image R(P ) of P by R (see page 125 ). Then P ′ is the point on the ray RPO so that

|P ′O| = |PO|. This is because ∠POP ′ is a straight angle (R is a 180 degree rotation)

and a rotation is distance-preserving (assumption Ro2 on page 130 ). Similarly, for

any other point Q, the image Q′ of Q by R is the point on RQO so that |Q′O| = |QO|.
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The truth of Theorem 1 depends on the simple observation that follows imme-

diately from assumption (A1) on page 115 , to the effect that two distinct lines are

either parallel or intersect at exactly at one point. (Recall: two lines are said to be

distinct if there is one point on one that does not lie in the other.) Now consider the

situation of Theorem 1 where a line L and a point O are given and O does not lie on

L. Let a line ` pass through O and intersect L at a point Q, as shown.

qq
�
�
�
�
�
�
�
�
�
�
�

L

O

Q

P

`

Now we make a second observation: if P is any point on the line ` not equal to Q,

then P does not lie on L. This is because L and `, being distinct lines, already have

one point Q in common and so the preceding observation says no other point can

be common to both lines. In particular, P does not lie on L, and the observation is

proved.

With this second observation in place, we can now prove Theorem 1.
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Proof of Theorem 1. First of all, we know that rotations map a line to another

line (assumption Ro1 on page 130 ), so that with assumptions and notation as in

Theorem 1, R maps the line L to a line to be denoted by R(L). We have to show

that R(L) and L have no point in common. Thus, if P is any point on R(L), we

must show that P does not lie on L. By definition of R(L), there is a point Q of L

so that P is the rotated image of Q by R and, R being a 180◦ rotation, P , O, Q lie

on a line ` (see (ii) of Assumption (A6) on page 122 ).
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The preceding observation now tells us that P—being a point of the line ` containing

O and Q but not equal to Q—does not lie on L. This then proves Theorem 1.

Theorem 1 has an unexpected consequence. The Parallel Postulate assures us

that, if P is a point which does not lie on a given line L, there is at most one line

passing through P and parallel to L, but it leaves open the possibility that there may

not be any line passing through P and parallel to L. With Theorem 1 at our disposal,

we now see that there is such a line because the said existence already follows from

Theorem 1:

Corollary. Given a line L and point P not on L, there is a line parallel to L and

passing through P .

Proof. Indeed, referring to the preceding picture, we take a point Q on L and let O

be the midpoint of the segment PQ. If R is the 180 degree rotation around O, then

Theorem 1 says the rotated image R(L) of L is parallel to L. But since a rotation

preserves length (assumption Ro1, page 130)), R maps Q to P , so that R(L) in fact

passes through P . The Corollary is proved.

As noted previously, this Corollary shows that our definition of translation is com-

pletely sound.
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Theorem 1 is deceptive because it is not obvious how it can be put to use. We

will see that it is in fact a central theorem with numerous interesting consequences,

including the very fact we are after, namely, the Theorem on page 129 . The following

is a first step toward this goal.

Theorem 2. Two lines perpendicular to the same line are either identical or parallel

to each other.

Proof. Let L1 and L2 be two lines perpendicular to a line ` at A1 and A2, respec-

tively. We have noted in an observation on page 124 that the line passing through a

given point of a line and perpendicular to that line is unique. Thus if A1 = A2, L1

and L2 are identical. So suppose A1 6= A2. We need to prove that L1 ‖ L2. Let R be

the rotation of 180 degrees around the midpoint M of A1A2. If we can show that the

image of L1 by R is L2, then we know L2 ‖ L1 by virtue of Theorem 1.
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To this end, note that R(L1) contains A2 because R(A1) = A2. We are given that

L1 ⊥ `. Since R(A1) = A2 and R(A2) = A1, we see that R(`) = ` (because of

assumption (A1)). By assumption Ro3 on page 130, rotations map perpendicular

lines to perpendicular lines. Thus we have R(L1) ⊥ `. It follows that each of R(L1)

and L2 is a line that passes through A2 and perpendicular to `. By the preceding

observation about the uniqueness of the line perpendicular to a line ` at a given point

of `, we see that, indeed, R(L1) = L2 and therefore L1 ‖ L2. Theorem 2 is proved.

Corollary 1. Through a point P not lying on a line passes at most one line L

perpendicular to the given line.
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Proof. Suppose in addition to L, there is another line L′ passing through P and

also perpendicular to the given line. Since these lines are not parallel (they already

have P in common), they have to be identical, by Theorem 2. Thus L = L′. Corollary

1 is proved.

We will make a digression. Recall that earlier we introduced the concept of a

rectangle as a quadrilateral whose adjacent sides are all perpendicular to each other.

As a result of Theorem 2, we now have:

Corollary 2. A rectangle is a parallelogram.

Corollary 1 addresses one half of the concern about a reflection being well-defined.

Now we prove the other half as well.

Theorem 3. Given a point not lying on a line `, there is a line that passes through

the point and perpendicular to `.

Proof. Let P be the point not lying on `. We have to show that there is a line

passing through P and perpendicular to `. Take any point A ∈ ` and let L′ be the

line passing through A and perpendicular to ` (see the observation on page 124 ). If

L′ contains P , we are done, so we may assume that L′ does not contain P . By the

Corollary to Theorem 1, there exists a line L passing through P and parallel to L′.

Let L intersect ` at B.
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There is a line passing through B and perpendicular to ` (see page 124 again); by

Theorem 2, this line is parallel to L′ and must therefore coincide with L, by the

Parallel Postulate. Thus L ⊥ `. This proves Theorem 3.

Theorem 3 and Corollary 1 to Theorem 2 together show that the Theorem on

page 129 is valid, i.e., from a point outside a given line L, there is one and only one

line passing through P and perpendicular to L. As we pointed out above, this shows

that the concept of reflection is well-defined.

At this point, we know that our definitions of all the basic rigid motions are well-

defined. Thus assumption (A7) on page 131 now makes sense and we will assume it

forthwith.

We note that (A7) is not a very useful assumption if there are not “plenty” of

basic rigid motions, and we proceed to address this concern. First, rotations. As a

result of assumption (A6) (i) and the definition of a rotation, there are “plenty” of

rotations in the following sense:

Lemma 2. Given a point and a degree t so that −360 ≤ t ≤ 360, there is a rotation

of degree t around the point.

Analogously, the same can be said about reflections as a result of Theorem 3 and

the definition of a reflection:

Lemma 3. Given a line in the plane, there is a reflection across that line.

Finally, because we know that given a line L and a point not on L, there is always

a line passing through that point and parallel to L (Corollary to Theorem 1, page
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133 ), the definition of the translation along any vector is well-defined. Thus there

are also “plenty” of translations:

Lemma 4. Given any vector, there is a translation along that vector.

In summary, Lemmas 2, 3, and 4 guarantee that, indeed, there are “plenty” of

basic rigid motions for any occasion. They will be the main tools for proving theorems

in plane geometry.

We end this section by making an interesting observation about the concept of

a translation T along a given vector −→v . Recall the definition: suppose the vector
−→v has starting point A and endpoint B, then if C does not lie on LAB, the image

D = T (C) is by definition the intersection of the line ` that is parallel to LAB and

the line L passing through B parallel to LAC .
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We are going to prove that |CD| = |AB|. Granting this for the moment, we now

observe that the translation TAB along the vector
−→
AB has the following intuitive

interpretation: it moves every point the same distance as that from A to B and “in

the same direction” as
−→
AB.

The fact that |CD| = |AB| follows from a general theorem: opposite sides of a

parallelogram are equal. This is because, by construction, the opposite sides of the

quadrilateral BACD are parallel: LBA ‖ LCD and LBD ‖ LAC . Thus BACD is a

parallelogram and |CD| = |AB|. It remains therefore to prove the following theorem.

Theorem 4. Opposite sides of a parallelogram are equal.

Theorem 4 together with the Corollary 2 to Theorem 2 imply:

Opposite sides of a rectangle are equal.
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This reconciles the usual definition in school mathematics of a rectangle (a quadrilat-

eral with four right angles and equal opposite sides) with our definition of a rectangle

(a quadrilateral with four right angles).

The idea of the proof of Theorem 4 is to exploit Theorem 1, for the most practical

of reasons: at this point, what other tools have we got? Of course, the presence

of parallel lines in a parallelogram already suggests that something like Theorem 1

should be relevant. It will be obvious from the proof of Theorem 4 below why the

following lemma is needed.

Lemma 5. Let F be a transformation of the plane that maps lines to lines. Suppose

two distinct lines L1 and L2 intersect at P and the image lines F (L1) and F (L2)

intersect at a single point Q, then F (P ) = Q.
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Proof of Lemma 5. Since P is a point in L1, we see that F (P ) is a point on F (L1),

by the definition of the image of L1 by F . Similarly, F (P ) lies on the line F (L2).

Therefore F (P ) lies in the intersection of F (L1) and F (L2). But by hypothesis, the

latter intersection is exactly the point Q. So F (P ) = Q and Lemma 5 is proved.

Proof of Theorem 4. Given parallelogram ABCD, we have to prove that |AD| =
|BC| and |AB| = |CD|. It suffices to prove the former as the proof of the latter is

similar. Let M be the midpoint of the diagonal AC and we will use Theorem 1 to

explore the implications of the 180 degree rotation R around M .
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BB
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q

Because |MA| = |MC| and rotations preserve distance (assumption (A7) on page

131 ), we have R(C) = A so that R(LBC) is a line passing through A and parallel
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to LBC (by Theorem 1). Since the line LAD has exactly the same two properties by

assumption, the Parallel Postulate implies that R(LBC) = LAD. Similarly, R(LAB) =

LCD. Thus, using the usual symbol ∩ to denote intersection (for two sets A and B,

A ∩B denotes all the elements belonging to both A and B), we have:

R(LBC) ∩R(LAB) = LAD ∩ LCD = {D}

On the other hand, LBC ∩ LAB = {B}. By Lemma 5, we have

R(B) = D

Recall we also have R(C) = A. Therefore R maps the segment BC to the segment

joining D (which is the image of B) to A (which is the image of C), by the property

that a rotation maps segments to segments (see assumption (A7) on page 131 ). The

latter segment has to be the segment DA, by (A1) (page 115 ). Thus R(BC) = DA,

so that by assumption (A7) that rotations preserve distance (page 131 ), we have

|BC| = |AD|, as desired.

Corollary. The angles of a parallelogram at opposite vertices are equal.

The proof is implicit in the proof of Theorem 4: we already have R(∠ABC) =

∠CDA, so simply use (ii) of assumption (A7) on page 131 to conclude the proof.

3. Congruence criteria for triangles

The main concern of this section is the proof of the three basic criteria for triangle

congruence: SAS, ASA, and SSS. We begin by elucidating the concept of congruence.

We need the concept of composing transformations. Let F and G be transforma-

tions of the plane. We define a new transformation F ◦ G, called the composition

of G and F , to be the rule which assigns to each point P of the plane the point

F (G(P )). Schematically, we have;

P
G−→ G(P )

F−→ F (G(P ))

i.e., we first let G send P to G(P ), and then let F send the point G(P ) to F (G(P )).

(For those familiar with the concept of composite functions, this should be déjà
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vu.) Notice the peculiar feature of the notation: the symbol F ◦ G suggests that F

comes before G if we read from left to right as usual, but in fact the definition itself,

which assigns to P the point F (G(P )), requires that G acts first. There is reason

to be careful about the order of the transformations in a given composition, for the

following reason. We say two transformations F1 and F2 are equal, in symbols

F1 = F2, if for every point P , it is true that F1(P ) = F2(P ). Then simple examples

would show that, in general, F ◦G 6= G ◦ F for two transformations F and G of the

plane.

The composition of more than two transformations is defined similarly. For ex-

ample, if F , G, H, K are transformations, then the composition F ◦G ◦H ◦K
is defined to be the rule which assigns to each point P the point F (G(H(K(P )))).

Definition. A congruence in the plane is a transformation of the plane which

is equal to the composition of a finite number of basic rigid motions.

If S is congruent to S ′, we write S ∼= S′. The definition of congruence immedi-

ately implies that a composition of congruences is still a congruence. One can also

verify, with a bit more effort, that if S is congruent to S ′, then also S ′ is congruent

to S. This eases the need to be extra careful about whether S is congruent to S ′ or

the other way around, S ′ is congruent to S; the two statements are equivalent.

Because each basic rigid motion is assumed to satisfy the properties of (A7) (page

131 ), we would expect that so does a congruence. This is the content of the next

lemma whose proof is straightforward.

Lemma 6. A congruence

(i) maps lines to lines, rays to rays, and segments to segments,

(ii) is distance-preserving and degree-preserving.

To demonstrate the usefulness of this definition of congruence, we can now explain

why the three classical criteria for triangle congruence—SAS, ASA, SSS—are true.

We begin with SAS and ASA,
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Theorem 5 (SAS). Given two triangles ABC and A0B0C0 so that |∠A| = |∠A0|,
|AB| = |A0B0|, and |AC| = |A0C0|. Then the triangles are congruent.

Theorem 6 (ASA). Given two triangles ABC and A0B0C0 so that |AB| = |A0B0|,
|∠A| = |∠A0|, and |∠B| = |∠B0|. Then the triangles are congruent.

The proofs of these two theorems are very similar. Because we have already given

an informal proof of ASA back in grade 8 (page 80 ), 28 we will only give the proof of

Theorem 5 (SAS) here.

We begin with two simple observations on the behavior of angles under a reflec-

tion. They are nothing more than variations on the theme of Lemma 1 (page 125).

As we shall see, they will be useful for other purposes as well.

Lemma 7. Given two equal angles ∠MAB and ∠NAB, suppose they have one side

AB in common and M and N are on opposite sides of the line LAB. Then the reflec-

tion across the line LAB maps ∠NAB to ∠MAB (and also maps ∠MAB to ∠NAB).
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Lemma 8. Suppose two angles ∠MAB and ∠NAB are equal, and they have one

side AB in common. Assume further that the segments AM and AN are equal. Then

either M = N (if M and N are on the same side of LAB) or the reflection across

LAB maps N to M (if M and N are on opposite sides of LAB).
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q

q
28That proof is essentially correct. It should also be mentioned that, instead of proving ASA as

on page 80 , one can also prove ASA by invoking SAS.
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For the proof of Lemma 7, observe that the reflection R across LAB maps ∠NAB

to ∠N0AB, where N0 = R(N), so that ∠N0AB and ∠MAB are now equal angles

with one side RAB in common and the other side lying in the same half-plane. So

∠N0AB = ∠MAB, by Lemma 1 (page 125). This proves Lemma 7. As to Lemma 8,

suppose M and N are on the same side of LAB. By the same Lemma 1, we know that

the rays AM and AN coincide. But since |AM | = |AN |, necessarily M = N . Now if

M and N are on opposite sides of LAB, then Lemma 7 shows that the reflection across

LAB maps the ray RAN to the ray RAM . Since a reflection preserves distance, the

reflection maps the segment AN to a segment of length equal to |AM |, and therefore

maps N to M by the preceding argument. This proves Lemma 8.

We are now in a position to begin the proof of SAS. Note that Larry Francis

has created an animation for this proof:

http://www.youtu.be/30dOn3QARVU

This animation complements the verbal proof below.

A general remark is that throughout the proofs in the remainder of this section, we

will be making implicit use of the fact that there are “plenty” of basic rigid motions

at our disposal in the precise sense of Lemmas 2–4 on page 136 . Suppose we are

given triangles ABC and A0B0C0 in the plane so that ∠A and ∠A0 are equal, and

furthermore, |AB| = |A0B0| and |AC| = |A0C0|. We have to explain why the triangles

are congruent. Let us say the triangles are like this:

Co

Ao

Bo

A B

C

By our definition of congruence, this means we must exhibit a sequence of basic

rigid motions so that their composition brings (let us say) 4ABC to coincide exactly

with 4A0B0C0. For ease of comprehension, we will first prove the theorem for the

pair of triangles in the above picture and leave a discussion of other variations to the

end. We will first move vertex A to A0 by a translation T along the vector from A

to A0, denoted by
−−→
AA0 (shown by the blue vector below).
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o

o

B

A B

C
Co

A

The effect of T is to slide 4ABC along
−−→
AA0. We show the image of two stages of

4ABC in transition: 4ABC is shown in red and the right blue arrow in each picture

indicates how much further the red triangle has yet to go. Because T also translates

4A0B0C0, we show the original position of 4A0B0C0 in dashed lines to remind us of

where we are ultimately heading.

o

Ao

Bo

C o

Ao

Bo

C

Here is the final position of4ABC (shown in red). We use dashed lines to indicate

the original positions of 4ABC and 4A0B0C0.

oA

A

C

B

Bo

Co

Next, we will use a rotation to bring the horizontal side of the red triangle (which

is the translated image of AB by T ) to A0B0. If the angle between the horizontal red

side and A0B0 is t degrees (in the picture above, t = 90), then a rotation of t degrees

(in this case counterclockwise) around A0 will map the horizontal ray issuing from A0

to the ray RA0B0 . Call this rotation R. Now it is given that |AB| = |A0B0|, and we
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know a translation preserves lengths (assumption (A7), page 131 ). So the horizontal

side of the red triangle has the same length as A0B0 and therefore R will map the

horizontal side of the red triangle to the side A0B0 of 4A0B0C0, as shown.

oA

C Co

BA

Bo

Two of the vertices of the red triangle already coincide withA0 andB0 of4A0B0C0.

We claim that after a reflection across line LA0B0 the third vertex of the red triangle

will be equal to C0. Indeed, the two marked angles with vertex A0 are equal since

basic rigid motions preserve degrees of angles (assumption (A7), page 131 ) and, by

hypothesis, ∠CAB and ∠C0A0B0 are equal. Moreover, the left side of the red tri-

angle with A0 as endpoint has the same length as A0C0 because basic rigid motions

preserve length ((A7) again), and by hypothesis |AC| = |A0C0|. Therefore our claim

follows from Lemma 8, page 141 . Thus after a reflection across LA0B0 , the red triangle

coincides with 4A0B0C0, as shown:

o

Co

A

A

C

B

Bo

Thus the desired congruence for the two triangles ABC and A0B0C0 in this par-

ticular picture is the composition of a translation, a rotation, and a reflection.

It remains to address the other possibilities and how they affect the above argu-

ment. If A = A0 to begin with, then the initial translation would be unnecessary. It

can also happen that after the translation T , the image T (AB) (which corresponds

to the horizontal side of the red triangle above) already coincides with A0B0. In that

case, the rotation R would be unnecessary. Finally, if after the rotation the image of

C is already on the same side of LA0B0 as C0, then Lemma 1 (page 125 ) implies that
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the image of C and C0 already coincide and the reflection would not be needed. In

any case, Theorem 5 is proved.

We next take up the third major criterion for triangle congruence, SSS. To this

end we prove the following theorem, which is interesting in its own right. If 4ABC
is an isosceles triangle so that |AB| = |AC|, then it is common to refer to ∠B and

∠C as its base angles, ∠A as its top angle, and BC as its base.
A

B CD

We will also refer to the line joining the midpoint of a side of a triangle to the

opposite vertex as a median of the side, and the line passing through the opposite

vertex and perpendicular to this side as the altitude on this side. Note that some-

times the segment from the vertex to the point of intersection of this line with the

(line containing the) side is called the median and the altitude, respectively.

Theorem 7. (a) An isosceles triangle has equal base angles. (b) In an isosceles

triangle, the perpendicular bisector of the base, the angle bisector of the top angle, the

median from the top vertex, and the altitude on the base all coincide.

Proof Referring to the preceding picture, let |AB| = |AC| in 4ABC, and let the

angle bisector of the top angle ∠A intersect the base BC at D.29 Let R be the

reflection across the line LAD. Since |∠BAD| = |∠CAD|, and since |AB| = |AC|,
we have R(B) = C by Lemma 8 (page 141 ). Now it is also true that R(D) = D

and R(A) = A because D and A lie on the line of reflection of R, so R(BD) = CD

and R(BA) = CA because a reflection maps a segment to a segment (by assumption

(A7), page 131 ). Consequently, R(∠B) = ∠C. Since a reflection preserves the degree

of angles (again by assumption (A7), page 131 ), we have |∠B| = |∠C|. This proves

part (a). For part (b), observe that since LAD is the line of reflection and R(B) = C,

R(∠ADB) = ∠ADC and R(BD) = (CD)

29The fact that the angle bisector of ∠A intersects BC is implied by assumption (A8) on page
131.
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Therefore |∠ADB| = |∠ADC| = 90◦, and |BD| = |CD|, so that LAD is the perpen-

dicular bisector of BC. Since LAD is, by construction, also the angle bisector of ∠A,

every statement in (b) follows. The proof is complete.

As an immediate corollary, we have the following useful characterization of the

perpendicular bisector of a segment:

Corollary. A point is on the perpendicular bisector of a segment if and only if it is

equidistant from the endpoints of the segment.

Proof. Let the segment be BC and let the point be A. If A is on the perpendicular

bisector ` of BC, then by the definition of the reflection R across `, R(B) = C and

R(A) = A.

q
B C

A

`

Thus R(AB) = AC, and since reflection is distance-preserving (assumption (A7)

page 131 ), |AB| = |AC| and A is equidistant from the endpoints B and C. Con-

versely, suppose |AB| = |AC|. Thus triangle ABC is isosceles and the angle bisector

of ∠A is the perpendicular bisector of BC, by Theorem 7. But the angle bisector of

∠A passes through A, so the perpendicular bisector of BC passes through A. The

proof is complete.

We now turn to the third major congruence criterion for triangles: SSS.

Theorem 8 (SSS). Two triangles with three pairs of equal sides are congruent.

Proof. Suppose triangles ABC and A′B′C ′ are given so that |AB| = |A′B′|, |AC| =
|A′C ′|, and |BC| = |B′C ′|.

Case 1. We begin by assuming that the triangles satisfy an additional restrictive

assumption: B = B′ and C = C ′, and we will prove that there is a basic rigid motion

that maps 4A′B′C ′ to 4ABC. Either A and A′ are on the same side of the line

146



LBC or on opposite sides; first assume they are on opposite sides. Here are two of the

possibilities, but our proof will be valid in all cases.
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By hypothesis, |AB| = |A′B′|, so B is equidistant from A and A′; by the Corollary

to Theorem 7 (page 146 ), B lies on the perpendicular bisector of AA′. For the same

reason, C lies on the perpendicular bisector of AA′. Because two points determine a

line ((A1), page 115 ), LBC is the perpendicular bisector of AA′. Thus the reflection

R across LBC maps A′ to A, B to B and C to C (see the definition of reflection on

page 127 ). Thus R(4A′B′C ′) = 4ABC. This then proves the theorem under the

stated restrictions that B = B′ and C = C ′ and A, A′ being on opposite sides of LBC .

Now suppose A, A′ are on the same side of LBC . Still with R as the reflection across

LBC , let R(A′) = A0, R(B′) = B0, and R(C ′) = C0. Then R(4A′B′C ′) = 4A0B0C0,

and the latter has the property that B = B0, C = C0, A, A0 are on opposite sides of

LBC , and |AB| = |A0B|, |AC| = |A0C| (because a reflection preserves distance, by

assumption (A7) on page 131). The preceding argument then shows that

4ABC = R(4A0B0C0)

In view of 4A0B0C0 = R(4A′B′C ′) and the fact that R ◦R is the identity transfor-

mation, we have

4ABC = R(4A0B0C0) = R(R(4A′B′C ′)) = 4A′B′C ′

Thus 4A′B′C ′ coincides with 4ABC in the first place. Therefore the theorem is

true if, in addition to the equality of three pairs of sides, B = B′ and C = C ′.

Case 2. Suppose we assume only that B = B′ but C 6= C ′. Because |BC| =

|B′C ′|, a suitable rotation Ro around B will bring B′C ′ to BC. Then the triangle

Ro(4A′B′C ′) and 4ABC share a side BC, so that by Case 1, there is a basic rigid

motion F (which is either a reflection or the identity) so that F (Ro(4A′B′C ′)) =

4ABC. 147
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Case 3. Finally, we treat the general case. In view of Case 2, we may assume

that triangles ABC and A′B′C ′ do not even share a vertex. Let T be the translation

along the vector
−−→
B′B. Then T (B′) = B, so that T (4A′B′C ′) and 4ABC share a

vertex B. Depending on whether T (C ′) is equal to C or not, we are in either Case 1

or Case 2. Thus there is some basic rigid motion F and some rotation Ro (Ro would

be the rotation of 0 degrees if T (C ′) = C), we have F (Ro(T (4A′B′C ′))) = 4ABC.

This proves Theorem 8.

Now that we have the three most important criteria for triangle congruence, it

is time to take stock of where we stand in terms of geometry instruction in high

school. It is well to reiterate the philosophy behind the geometry standards in the

CCSS: whereas the usual geometry curriculum in grades 8–12 is incoherent due to a

sharp break between the recreational study of translations, rotations, and reflections

in middle school and the introduction of axioms and (seemingly) rigorous proofs in

high school, the CCSS smooth over this break by amplifying on the mathematical

significance of translations, rotations, and reflections and using them to directly ac-

cess high school geometry. In the process, we also bypass the deadly litany of the

proofs of boring elementary theorems that attend the early part of every axiomatic

development. The preceding three sections are devoted to a fairly detailed description

of how this new transition can be accomplished. Now that some basic facts (e.g., par-

allelograms have equal opposite sides, isosceles triangles have equal base angles, etc.)

together with SAS, ASA, SSS are at our disposal, classroom instruction can turn to

the traditional presentations of theorems in Euclidean geometry if one so wishes. For

details of an alternate approach at this point, please see the second reference on page

113 .

It should be clear that the CCSS do not pursue so-called transformational geometry
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as a goal in itself. In the CCSS, the basic rigid motions are given a place of prominence

only because (1) these rigid motions are already a time-honored part of the existing

middle-school geometry curriculum, (2) they serve to reveal that “congruence” means

more than “same size and same shape”, and (3) they serve to bridge the transition

from middle school to high school. The basic rigid motions therefore are a means to

an end in the CCSS, but by no means an end in itself.

Of course, high school geometry is not just about congruences of triangles. There

are two major topics we have not touched on here, similarity and circles, but we hope

that what has been done for congruence is a sufficient indication of the potential of

the CCSS approach to high school geometry. Once again, we refer to the second

reference on page 113 for more details on these two topics.

4. The number π

The goal of this section is to bring closure to the discussion of why it is peda-

gogically preferable to define the number π as the area of the unit disk rather than

as the ratio of the circumference over the diameter (see page 55 ). At this point, we

will slightly extend the intuitive definition of the area of a disk (page 56 ) by giving

a general definition of the area of a plane region as the limit of the areas of ap-

proximating polygons that are inside the region (this is a definition that can be made

completely correct by tightening the phrasing). We make use of this fact as follows.

First, by a square grid, we mean a collection of horizontal and vertical lines so that

the distance between any two horizontal lines is equal to the distance between any

two vertical lines, and by a square of the square grid, we mean a square whose

sides are on two adjacent horizontal lines and two adjacent vertical lines of the grid.

The length of a side of the squares in a grid is called the mesh of the grid. When a

circle and a grid G are given, it makes sense to talk about all the squares of G lying

inside the circle; the collection of all such squares is called the inner polygon of G
when the circle is clearly understood.

We need so much terminology for a reason, as we proceed to explain. Fix a unit

circle. If we have a sequence of square grids Gn so that the mesh of G goes to 0 as

n→∞, then it is also intuitively clear that as n→∞, the (region inside the) inner

polygon Pn of Gn gets closer and closer to the unit disk. Below are two examples
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of inner polygons (colored in blue) which indicate why the (region inside an) inner

polygon approximates the unit disk better and better when the mesh of the grid

decreases.

By definition, the limit of the area |Pn| of the inner polygon Pn, as n→∞ (thus the

mesh of the grid goes down to 0) is the area of the unit disk. Recalling that π is

the area of the unit disk, we have:

π = lim
n→∞

|Pn|

We will now produce an inner polygon for the unit circle by using graph paper.

We start by drawing a quarter unit circle on a piece of graph paper. In principle, you

should get the best graph paper possible because we are going to use the grid of the

graph paper to directly estimate π. (The squares in the grid of cheap graph paper

are usually not really squares.) So to simplify matters, suppose a quarter of a unit

circle is drawn on a piece of graph paper so that the radius of length 1 is equal to 5

(sides of the) small squares, as shown. (Now as later, we shall use small squares to

refer to the squares of the grid.)

1O

The square of area 1 then contains 52 small squares. We want to estimate how many

small squares are contained in this quarter circle. The shaded polygon consists of 15

small squares of the grid. There are 7 small squares each of which is partially inside
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the quarter circle. Let us estimate the best we can how many small squares altogether

are inside the quarter circle. Among the three small squares in the top row, a little

more than 2 small squares seem to be inside the quarter circle; let us say 2.1 small

squares. By symmetry, the three small squares in the right column also contribute

2.1 small squares. As to the remaining lonely small square near the top right-hand

corner, there is about 0.5 of it inside the quarter circle . Altogether the non-shaded

small squares contribute 2.1 + 2.1 + 0.5 = 4.7 small squares, so that the total number

of small squares inside the quarter circle is, approximately,

15 + 4.7 = 19.7

The unit circle therefore contains about

4× 19.7 = 78.8 small squares

Now π is the area of the unit circle, and we know that the area of 25 small squares is

equal to 1. So the total area of 78.8 small squares is

78.8

25
= 3.152

Our estimate of π is that it is roughly equal to 3.152. Taking the value of π

to be 3.14159, accurate to 5 decimal digits, the percentage error of this estimate is

approximately equal to
3.152− 3.14159

3.14159
∼ 0.33%

While a relative error of 0.33% is very impressive, this experiment is not convincing

because the amount of guesswork needed to arrive at the final answer is too high.

With a very fine and accurate grid (this is where you spend money to get good graph

paper), one can reasonably get the linear unit 1 to be equal to anywhere between 25

to 50 sides of small squares so that the unit area would consist of between 252 to 502

small squares. Then the percentage of guesswork needed to estimate what happens

to the small squares near the circle will be greatly reduced (though the counting of

the total number of small squares can get dizzying).

In general, with the unit 1 equal to n small squares, then n2 small squares have a

total area of 1. If there are, after some guessing, k small squares in a quarter circle,
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then there are 4k small squares in the unit circle. Thus the area of the unit disk is

π ≈ 4k

n2

The relative error rarely exceeds 1%. This should be both impressive and in-

structive to students. This is also the reason it is pedagogically better to define the

number π by area, as it is nearly impossible to get such a good estimate of π using

the definition of π as the ratio of circumference to diameter.

It is recommended that all students do this activity so that they get a firm con-

ception of what π is, namely, a number between 3 and 4 whose value they themselves

can approximate closely if they wish.

High school students should also be exposed to an informal derivation of the vol-

ume formula of a sphere of radius r using Cavalieri’s Principle. As is well known, the

volume formula in question is 4
3
πr3. However, in order not to add to the size of this

already long document, we will simply refer to the second reference on page 113 for

details.

5. Pedagogical implications

One of the problems encountered by beginners in geometry is their inability to

reconcile the chasm between intuition and formalism in the prevailing presentations

of the subject. The two basic concepts of congruence and similarity come across as

either formal and abstract, or intuitive but irrelevant. In the axiomatic presentations,

congruence and similarity are defined precisely but only for polygons and, as such,

they are divorced from the intuitive way these terms are normally used. In the other

extreme, congruence is “same size and same shape”, and similarity is “same shape

but not necessarily the same size”. Because mathematics demands precision, the

informality of these definitions raises the question, never addressed, about what these

concepts have to do with mathematics. Students cannot use these intuitive definitions

to prove theorems; instead, they are taught to use SAS and SSS for both congruence

and similarity, AA for similarity, etc. At the end, these concepts become synonymous

with rote procedures and, by extension, proving theorems in geometry also becomes

a rote procedure.
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The potential benefit of defining congruence using reflections, rotations, and trans-

lations is that they transform an abstract concept into one that is concrete and tactile.

This is the whole point of the eighth grade geometry standards, which ask for the

use of manipulatives, especially transparencies, to model reflections, rotations, and

translations, i.e., to model congruence. It is for this reason that we used reflections,

rotations, and translations to prove all three criteria of triangle congruence—SAS,

ASA, and SSS—even when there is always the option to use SAS to prove ASA and

SSS. We hope that the two earlier sections, Sections 2 and 3, have given a convinc-

ing demonstration that theorem-proving in geometry does not have to be an exercise

in formalism and abstraction. Congruence is something students can relate to in a

tactile manner just by moving a transparency over a piece of paper or a cardboard

geometric figure across the blackboard. In the same way, we can also ground the

learning of similarity in such tactile experiences.

There is an additional advantage in this approach that has been mentioned and

deserves to be mentioned again. In Sections 2 and 3, we have given the complete

logical development of the first few theorems of plane geometry by making strong use

of basic rigid motions. In addition, we have proved in this short space the three basic

congruence criteria for triangle congruence: SAS, ASA, and SSS. Because most of

the theorems in plane geometry before the introduction of similarity depend only on

these three criteria, this fact allows a transition into the traditional way of proving

theorems at this point, without further use of basic rigid motions if so desired. The

use of dilation to treat similarity can likewise be limited to the initial stage, if so

desired; again see the following article for further details:

H. Wu, Teaching Geometry in Grade 8 and High School

According to the Common Core Standards (to be made

available, hopefully after June 15, 2012)

The professional judgment of the practitioners in geometry is that, at least ini-

tially, geometric intuition is mostly built on tactile experiences rather than abstract

formalism. The goal of these standards is to provide a sound foundation for the

learning of geometry by maximizing the use of such tactile experiences.
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http://math.berkeley.edu/~wu/CCSS-Geometry.pdf
http://math.berkeley.edu/~wu/CCSS-Geometry.pdf

